This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371732 #7 Apr 14 2024 03:49:39 %S A371732 1,2,4,8,12,16,32,64,128,144,256,288,512,576,1024,2048,3072,4096,8192, %T A371732 16384,32768,32800,33024,33056,65536,65600,66048,66112,131072,132096, %U A371732 133120,134144,262144,266240,524288,528384,786432,790528,1048576,1056768,2097152 %N A371732 Numbers n such that each binary index k (from row n of A048793) has the same sum of binary indices A029931(k). %e A371732 The terms together with their binary expansions and binary indices begin: %e A371732 1: 1 ~ {1} %e A371732 2: 10 ~ {2} %e A371732 4: 100 ~ {3} %e A371732 8: 1000 ~ {4} %e A371732 12: 1100 ~ {3,4} %e A371732 16: 10000 ~ {5} %e A371732 32: 100000 ~ {6} %e A371732 64: 1000000 ~ {7} %e A371732 128: 10000000 ~ {8} %e A371732 144: 10010000 ~ {5,8} %e A371732 256: 100000000 ~ {9} %e A371732 288: 100100000 ~ {6,9} %e A371732 512: 1000000000 ~ {10} %e A371732 576: 1001000000 ~ {7,10} %e A371732 1024: 10000000000 ~ {11} %e A371732 2048: 100000000000 ~ {12} %e A371732 3072: 110000000000 ~ {11,12} %e A371732 4096: 1000000000000 ~ {13} %e A371732 8192: 10000000000000 ~ {14} %e A371732 16384: 100000000000000 ~ {15} %e A371732 32768: 1000000000000000 ~ {16} %e A371732 32800: 1000000000100000 ~ {6,16} %t A371732 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371732 Select[Range[1000],SameQ@@Total/@bix/@bix[#]&] %Y A371732 For prime instead of binary indices we have A326534. %Y A371732 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A371732 A058891 counts set-systems, A003465 covering, A323818 connected. %Y A371732 A070939 gives length of binary expansion. %Y A371732 A096111 gives product of binary indices. %Y A371732 A321142 and A371794 count non-biquanimous strict partitions. %Y A371732 A321452 counts quanimous partitions, ranks A321454. %Y A371732 A326031 gives weight of the set-system with BII-number n. %Y A371732 A357976 ranks the biquanimous partitions counted by A002219 aerated. %Y A371732 A371731 ranks the non-biquanimous partitions counted by A371795, A006827. %Y A371732 Cf. A035470, A038041, A237258, A320324, A321453, A321455, A326518, A336137, A371783, A371791, A371796. %K A371732 nonn,base %O A371732 1,2 %A A371732 _Gus Wiseman_, Apr 13 2024