This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371735 #7 Apr 15 2024 09:47:59 %S A371735 0,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,2,1,1,2,1,2,1,1,2,3,1,1, %T A371735 1,1,1,1,1,2,1,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,1,1,1,3,2,1,2,3,1,1,1,1, %U A371735 1,1,1,1,1,1,1,2,2,1,1,1,1,1,2,1,1,2,1 %N A371735 Maximal length of a set partition of the binary indices of n into blocks all having the same sum. %C A371735 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A371735 If a(n) = k then the binary indices of n (row n of A048793) are k-quanimous (counted by A371783). %e A371735 The binary indices of 119 are {1,2,3,5,6,7}, and the set partitions into blocks with the same sum are: %e A371735 {{1,7},{2,6},{3,5}} %e A371735 {{1,5,6},{2,3,7}} %e A371735 {{1,2,3,6},{5,7}} %e A371735 {{1,2,3,5,6,7}} %e A371735 So a(119) = 3. %t A371735 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A371735 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371735 Table[Max[Length/@Select[sps[bix[n]],SameQ@@Total/@#&]],{n,0,100}] %Y A371735 Set partitions of this type are counted by A035470, A336137. %Y A371735 A version for factorizations is A371733. %Y A371735 Positions of 1's are A371738. %Y A371735 Positions of terms > 1 are A371784. %Y A371735 A001055 counts factorizations. %Y A371735 A002219 (aerated) counts biquanimous partitions, ranks A357976. %Y A371735 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A371735 A070939 gives length of binary expansion. %Y A371735 A321452 counts quanimous partitions, ranks A321454. %Y A371735 A326031 gives weight of the set-system with BII-number n. %Y A371735 A371783 counts k-quanimous partitions. %Y A371735 A371789 counts non-quanimous sets, differences A371790. %Y A371735 A371796 counts quanimous sets, differences A371797. %Y A371735 Cf. A006827, A038041, A096111, A279787, A305551, A321451, A321455, A322794, A326534, A371731, A371734. %K A371735 nonn %O A371735 0,8 %A A371735 _Gus Wiseman_, Apr 14 2024