This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371738 #8 Apr 16 2024 19:21:46 %S A371738 1,2,3,4,5,6,8,9,10,11,12,14,16,17,18,19,20,21,23,24,26,28,29,32,33, %T A371738 34,35,36,37,38,40,41,43,44,46,48,50,52,53,55,56,57,58,61,64,65,66,67, %U A371738 68,69,70,71,72,73,74,77,78,79,80,81,83,84,86,88,89,91,92 %N A371738 Numbers with non-quanimous binary indices. Numbers whose binary indices have only one set partition with all equal block-sums. %C A371738 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A371738 The binary indices of 165 are {1,3,6,8}, with qualifying set partitions {{1,8},{3,6}}, and {{1,3,6,8}}, so 165 is not in the sequence. %e A371738 The terms together with their binary expansions and binary indices begin: %e A371738 1: 1 ~ {1} %e A371738 2: 10 ~ {2} %e A371738 3: 11 ~ {1,2} %e A371738 4: 100 ~ {3} %e A371738 5: 101 ~ {1,3} %e A371738 6: 110 ~ {2,3} %e A371738 8: 1000 ~ {4} %e A371738 9: 1001 ~ {1,4} %e A371738 10: 1010 ~ {2,4} %e A371738 11: 1011 ~ {1,2,4} %e A371738 12: 1100 ~ {3,4} %e A371738 14: 1110 ~ {2,3,4} %e A371738 16: 10000 ~ {5} %e A371738 17: 10001 ~ {1,5} %e A371738 18: 10010 ~ {2,5} %e A371738 19: 10011 ~ {1,2,5} %e A371738 20: 10100 ~ {3,5} %e A371738 21: 10101 ~ {1,3,5} %e A371738 23: 10111 ~ {1,2,3,5} %t A371738 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371738 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A371738 Select[Range[100],Length[Select[sps[bix[#]],SameQ@@Total/@#&]]==1&] %Y A371738 Set partitions with all equal block-sums are counted by A035470. %Y A371738 Positions of 1's in A336137 and A371735. %Y A371738 The complement is A371784. %Y A371738 A000110 counts set partitions. %Y A371738 A002219 (aerated) counts biquanimous partitions, ranks A357976. %Y A371738 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A371738 A070939 gives length of binary expansion. %Y A371738 A321451 counts non-quanimous partitions, ranks A321453. %Y A371738 A321452 counts quanimous partitions, ranks A321454. %Y A371738 A371789 counts non-quanimous sets, differences A371790. %Y A371738 A371796 counts quanimous sets, differences A371797. %Y A371738 Cf. A001055, A006827, A038041, A305551, A321455, A326534, A371733. %K A371738 nonn,base %O A371738 1,2 %A A371738 _Gus Wiseman_, Apr 14 2024