This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371740 #9 Apr 14 2024 13:48:03 %S A371740 1,2,1,1,0,4,0,3,1,0,6,6,0,5,6,1,0,16,24,8,0,14,23,10,1,0,60,110,60, %T A371740 10,0,54,105,65,15,1,0,288,600,420,120,12,0,264,574,435,145,21,1,0, %U A371740 1680,3836,3150,1190,210,14,0,1560,3682,3199,1330,280,28,1,0,11520,28224,25984,11760,2800,336,16 %N A371740 Triangle read by rows: g.f. (1 - t)^(-x) * (1 + t)^(2-x). %F A371740 G.f.: (1 - t)^(-x)*(1 + t)^(2-x) = Sum_{n >= 0} R(n, x)*t^n/floor((n+1)/2)! = 1 + 2*t/1! + (1 + x)*t^2/1! + 4*x*t^3/2! + x*(3 + x)*t^4/2! + 6*x*(1 + x)*t^5/3! + x*(1 + x)*(5 + x)*t^6/3! + 8*x*(1 + x)*(2 + x)*t^7/3! + x*(1 + x)*(2 + x)*(7 + x)*t^8/4! + 10*x*(1 + x)*(2 + x)*(3 + x)*t^9/5! + .... %F A371740 Row polynomials: R(2*n, x) = (2*n - 1 + x) * Product_{i = 0..n-2} (x + i) for n >= 1. %F A371740 R(2*n+1, x) = (2*n + 2) * Product_{i = 0..n-1} (x + i) for n >= 0. %F A371740 T(2*n, k) = |Stirling1(n, k)| + n*|Stirling1(n-1, k)| = A132393(n, k) + n* A132393(n-1, k); %F A371740 T(2*n+1, k) = (2*n + 2)*|Stirling1(n, k)| = (2*n + 2)*A132393(n, k). %F A371740 n-th row sum equals 2 * floor((n+1)/2)! for n >= 1. %e A371740 Triangle begins %e A371740 n\k | 0 1 2 3 4 5 %e A371740 - - - - - - - - - - - - - - - - - %e A371740 0 | 1 %e A371740 1 | 2 %e A371740 2 | 1 1 %e A371740 3 | 0 4 %e A371740 4 | 0 3 1 %e A371740 5 | 0 6 6 %e A371740 6 | 0 5 6 1 %e A371740 7 | 0 16 24 8 %e A371740 8 | 0 14 23 10 1 %e A371740 9 | 0 60 110 60 10 %e A371740 10 | 0 54 105 65 15 1 %e A371740 ... %p A371740 with(combinat): %p A371740 T := proc (n, k); if irem(n, 2) = 0 then abs(Stirling1((1/2)*n, k)) + (n/2)*abs(Stirling1((n-2)/2, k)) else (n+1)*abs(Stirling1((n-1)/2, k)) end if; end proc: %p A371740 seq(print(seq(T(n, k), k = 0..floor(n/2))), n = 0..12); %Y A371740 Cf. A052849, A132393, A371741. %K A371740 nonn,tabf,easy %O A371740 0,2 %A A371740 _Peter Bala_, Apr 09 2024