cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371759 a(n) is the smallest n-gonal number that is a Fermat pseudoprime to base 2 (A001567), or -1 if no such number exists.

Original entry on oeis.org

561, 1194649, 7957, 561, 23377, 341, 129889, 1105, 35333, 561, 204001, 31609, 2940337, 1105, 493697, 8481, 13981, 1905, 88561, 41665, 10680265, 1729, 107185, 264773, 449065, 6601, 2165801, 23001, 1141141, 13981, 272251, 4369, 17590957, 15841, 137149, 2821, 561
Offset: 3

Views

Author

Amiram Eldar, Apr 05 2024

Keywords

Comments

The corresponding indices of the n-gonal numbers are 33, 1093, 73, 17, 97, ... (A371760).

Examples

			a(4) = A001220(1)^2 = 1093^2 = 1194649. The only known square base-2 pseudoprimes are the squares of the Wieferich primes (A001220).
		

Crossrefs

Programs

  • Mathematica
    p[k_, n_] := ((n-2)*k^2 - (n-4)*k)/2; pspQ[n_] := CompositeQ[n] && PowerMod[2, n - 1, n] == 1; a[n_] := Module[{k = 2}, While[! pspQ[p[k, n]], k++]; p[k, n]]; Array[a, 50, 3]
  • PARI
    p(k, n) = ((n-2)*k^2 - (n-4)*k)/2;
    ispsp(n) = !isprime(n) && Mod(2, n)^(n-1) == 1;
    a(n) = {my(k = 2); while(!ispsp(p(k, n)), k++); p(k, n);}

Formula

a(n) = ((n-2)*k^2 - (n-4)*k)/2, where k = A371760(n).