This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371763 #16 Apr 19 2024 16:52:15 %S A371763 0,1,1,5,6,4,13,18,15,9,29,42,39,28,16,61,90,87,68,45,25,125,186,183, %T A371763 148,105,66,36,253,378,375,308,225,150,91,49,509,762,759,628,465,318, %U A371763 203,120,64,1021,1530,1527,1268,945,654,427,264,153,81 %N A371763 Triangle read by rows: Trace of the Akiyama-Tanigawa algorithm for powers x^2. %C A371763 The Akiyama-Tanigawa is a sequence-to-sequence transformation AT := A -> B. If A(n) = 1/(n + 1) then B(n) are the Bernoulli numbers. Tracing the algorithm generates a triangle where the right edge is sequence A and the left edge is its transform B. %C A371763 Here we consider the sequence A(n) = n^2 that is transformed into sequence B(n) = |A344920(n)|. The case A(n) = n^3 is A371764. Sequence [1, 1, 1, ...] generates A023531 and sequence [0, 1, 2, 3, ...] generates A193738. %C A371763 In their general form, the AT-transforms of the powers are closely related to the poly-Bernoulli numbers A099594 and generate the rows of the array A371761. %F A371763 T(n, k) = n^2 if n=k, otherwise (k + 1)*(2^(n - k)*(k + 2) - 3). - _Detlef Meya_, Apr 19 2024 %e A371763 Triangle starts: %e A371763 0: 0 %e A371763 1: 1, 1 %e A371763 2: 5, 6, 4 %e A371763 3: 13, 18, 15, 9 %e A371763 4: 29, 42, 39, 28, 16 %e A371763 5: 61, 90, 87, 68, 45, 25 %e A371763 6: 125, 186, 183, 148, 105, 66, 36 %e A371763 7: 253, 378, 375, 308, 225, 150, 91, 49 %p A371763 ATProw := proc(k, n) local m, j, A; %p A371763 for m from 0 by 1 to n do %p A371763 A[m] := m^k; %p A371763 for j from m by -1 to 1 do %p A371763 A[j - 1] := j * (A[j] - A[j - 1]) %p A371763 od od; convert(A, list) end: %p A371763 ATPtriangle := (p, len) -> local k; %p A371763 ListTools:-Flatten([seq(ATProw(p, k), k = 0..len)]): %p A371763 ATPtriangle(2, 9); %t A371763 T[n,k] := If[n==k, n^2, (k+1)*(2^(n-k)*(k+2)-3)]; Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* _Detlef Meya_, Apr 19 2024 *) %o A371763 (Python) %o A371763 # See function ATPowList in A371761. %o A371763 (Julia) %o A371763 function ATPtriangle(k::Int, len::Int) %o A371763 A = Vector{BigInt}(undef, len) %o A371763 B = Vector{Vector{BigInt}}(undef, len) %o A371763 for n in 0:len-1 %o A371763 A[n+1] = n^k %o A371763 for j = n:-1:1 %o A371763 A[j] = j * (A[j+1] - A[j]) %o A371763 end %o A371763 B[n+1] = A[1:n+1] %o A371763 end %o A371763 return B %o A371763 end %o A371763 for (n, row) in enumerate(ATPtriangle(2, 9)) %o A371763 println("$(n-1): ", row) %o A371763 end %Y A371763 Family of triangles: A023531 (n=0), A193738 (n=1), this triangle (n=2), A371764 (n=3). %Y A371763 Cf. A371761, A344920, A099594. %K A371763 nonn,tabl %O A371763 0,4 %A A371763 _Peter Luschny_, Apr 15 2024