This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371764 #17 Apr 21 2024 19:12:53 %S A371764 0,1,1,13,14,8,73,86,57,27,301,374,273,148,64,1081,1382,1065,628,305, %T A371764 125,3613,4694,3729,2308,1205,546,216,11593,15206,12297,7828,4265, %U A371764 2058,889,343,36301,47894,39153,25348,14165,7098,3241,1352,512 %N A371764 Triangle read by rows: Trace of the Akiyama-Tanigawa algorithm for powers x^3. %C A371764 See the comments in A371763. %F A371764 T(n, k) = n^3 if n=k, otherwise 2*binomial(k + 3, k)*3^(n - k + 1) - 6*binomial(k + 2, k)*2^(n - k + 1) + 7*(k + 1). - _Detlef Meya_, Apr 21 2024 %e A371764 Triangle starts: %e A371764 0: 0 %e A371764 1: 1, 1 %e A371764 2: 13, 14, 8 %e A371764 3: 73, 86, 57, 27 %e A371764 4: 301, 374, 273, 148, 64 %e A371764 5: 1081, 1382, 1065, 628, 305, 125 %e A371764 6: 3613, 4694, 3729, 2308, 1205, 546, 216 %e A371764 7: 11593, 15206, 12297, 7828, 4265, 2058, 889, 343 %p A371764 # Using function ATPtriangle from A371763. %p A371764 ATPtriangle(3, 9); %p A371764 # Or, after _Detlef Meya_: %p A371764 T := (n,k) -> (k+1)*(7-(k+2)*(3*2^(n-k+1)-(k+3)*3^(n-k)))-`if`(n=k,1,0): %p A371764 seq(seq(T(n, k), k = 0..n), n = 0..8); # _Peter Luschny_, Apr 21 2024 %t A371764 T[n_, k_] := If[n==k, n^3, 2*Binomial[k + 3, k]*3^(n - k + 1) - 6*Binomial[k + 2, k]*2^(n - k + 1) + 7*(k + 1)]; Flatten[Table[T[n, k],{n, 0, 8},{k, 0, n}]] (* _Detlef Meya_, Apr 21 2024 *) %o A371764 (Python) # See function ATPowList in A371761. %o A371764 (Julia) # Using function ATPtriangle from A371763. %o A371764 ATPtriangle(3, 8) %Y A371764 Cf. A371761, A371763. %Y A371764 Cf. A006230 (left edge). %K A371764 nonn,tabl %O A371764 0,4 %A A371764 _Peter Luschny_, Apr 15 2024