This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371783 #16 Mar 05 2025 22:05:02 %S A371783 1,2,1,3,1,5,3,1,7,1,11,6,4,1,15,1,22,14,5,1,30,10,1,42,25,6,1,56,1, %T A371783 77,53,30,15,7,1,101,1,135,89,8,1,176,65,21,1,231,167,55,9,1,297,1, %U A371783 385,278,173,28,10,1,490,1,627,480,140,91,11,1,792,343,36,1 %N A371783 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n that can be partitioned into d = A027750(n,k) blocks with equal sums. %C A371783 These could be called d-quanimous partitions, cf. A002219, A064914, A321452. %e A371783 Triangle begins: %e A371783 1 %e A371783 2 1 %e A371783 3 1 %e A371783 5 3 1 %e A371783 7 1 %e A371783 11 6 4 1 %e A371783 15 1 %e A371783 22 14 5 1 %e A371783 30 10 1 %e A371783 42 25 6 1 %e A371783 56 1 %e A371783 77 53 30 15 7 1 %e A371783 101 1 %e A371783 135 89 8 1 %e A371783 176 65 21 1 %e A371783 Row n = 6 counts the following partitions: %e A371783 (6) (33) (222) (111111) %e A371783 (33) (321) (2211) %e A371783 (42) (2211) (21111) %e A371783 (51) (3111) (111111) %e A371783 (222) (21111) %e A371783 (321) (111111) %e A371783 (411) %e A371783 (2211) %e A371783 (3111) %e A371783 (21111) %e A371783 (111111) %t A371783 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; %t A371783 facs[n_]:=If[n<=1,{{}}, Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]]; %t A371783 Table[Length[Select[IntegerPartitions[n], Select[facs[Times@@Prime/@#], Length[#]==k&&SameQ@@hwt/@#&]!={}&]],{n,1,8},{k,Divisors[n]}] %Y A371783 Row lengths are A000005. %Y A371783 Column k = 1 is A000041. %Y A371783 Inserting zeros gives A371954. %Y A371783 Row sums are A372121. %Y A371783 A002219 (aerated) counts biquanimous partitions, ranks A357976. %Y A371783 A237258 aerated counts biquanimous strict partitions, ranks A357854. %Y A371783 A321142 and A371794 count non-biquanimous strict partitions. %Y A371783 A321451 counts non-quanimous partitions, ranks A321453. %Y A371783 A321452 counts quanimous partitions, ranks A321454. %Y A371783 A371736 counts non-quanimous strict partitons, complement A371737. %Y A371783 A371781 lists numbers with biquanimous prime signature, complement A371782. %Y A371783 A371789 counts non-quanimous sets, differences A371790. %Y A371783 A371796 counts quanimous sets, differences A371797. %Y A371783 Cf. A006827, A027750, A035470, A064914, A321455, A365543, A371791, A371795. %K A371783 nonn,tabf %O A371783 1,2 %A A371783 _Gus Wiseman_, Apr 14 2024 %E A371783 More terms from _Jinyuan Wang_, Feb 13 2025 %E A371783 Name edited by _Peter Munn_, Mar 05 2025