cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371784 Numbers with quanimous binary indices. Numbers whose binary indices can be partitioned in more than one way into blocks with the same sum.

This page as a plain text file.
%I A371784 #5 Apr 16 2024 19:21:42
%S A371784 7,13,15,22,25,27,30,31,39,42,45,47,49,51,54,59,60,62,63,75,76,82,85,
%T A371784 87,90,93,94,95,97,99,102,107,108,109,110,115,117,119,120,122,125,126,
%U A371784 127,141,143,147,148,153,155,158,162,165,167,170,173,175,179,180
%N A371784 Numbers with quanimous binary indices. Numbers whose binary indices can be partitioned in more than one way into blocks with the same sum.
%C A371784 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%e A371784 The binary indices of 165 are {1,3,6,8}, with qualifying set partitions {{1,8},{3,6}}, and {{1,3,6,8}}, so 165 is in the sequence.
%e A371784 The terms together with their binary expansions and binary indices begin:
%e A371784    7:     111 ~ {1,2,3}
%e A371784   13:    1101 ~ {1,3,4}
%e A371784   15:    1111 ~ {1,2,3,4}
%e A371784   22:   10110 ~ {2,3,5}
%e A371784   25:   11001 ~ {1,4,5}
%e A371784   27:   11011 ~ {1,2,4,5}
%e A371784   30:   11110 ~ {2,3,4,5}
%e A371784   31:   11111 ~ {1,2,3,4,5}
%e A371784   39:  100111 ~ {1,2,3,6}
%e A371784   42:  101010 ~ {2,4,6}
%e A371784   45:  101101 ~ {1,3,4,6}
%e A371784   47:  101111 ~ {1,2,3,4,6}
%e A371784   49:  110001 ~ {1,5,6}
%e A371784   51:  110011 ~ {1,2,5,6}
%e A371784   54:  110110 ~ {2,3,5,6}
%e A371784   59:  111011 ~ {1,2,4,5,6}
%e A371784   60:  111100 ~ {3,4,5,6}
%e A371784   62:  111110 ~ {2,3,4,5,6}
%e A371784   63:  111111 ~ {1,2,3,4,5,6}
%t A371784 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A371784 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A371784 Select[Range[100],Length[Select[sps[bix[#]],SameQ@@Total/@#&]]>1&]
%Y A371784 Set partitions with all equal block-sums are counted by A035470.
%Y A371784 Positions of terms > 1 in A336137 and A371735.
%Y A371784 The complement is A371738.
%Y A371784 A000110 counts set partitions.
%Y A371784 A002219 (aerated) counts biquanimous partitions, ranks A357976.
%Y A371784 A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
%Y A371784 A070939 gives length of binary expansion.
%Y A371784 A321451 counts non-quanimous partitions, ranks A321453.
%Y A371784 A321452 counts quanimous partitions, ranks A321454.
%Y A371784 A371789 counts non-quanimous sets, differences A371790.
%Y A371784 A371796 counts quanimous sets, differences A371797.
%Y A371784 Cf. A001055, A006827, A038041, A305551, A321455, A326534, A371733.
%K A371784 nonn,base
%O A371784 1,1
%A A371784 _Gus Wiseman_, Apr 16 2024