This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371784 #5 Apr 16 2024 19:21:42 %S A371784 7,13,15,22,25,27,30,31,39,42,45,47,49,51,54,59,60,62,63,75,76,82,85, %T A371784 87,90,93,94,95,97,99,102,107,108,109,110,115,117,119,120,122,125,126, %U A371784 127,141,143,147,148,153,155,158,162,165,167,170,173,175,179,180 %N A371784 Numbers with quanimous binary indices. Numbers whose binary indices can be partitioned in more than one way into blocks with the same sum. %C A371784 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A371784 The binary indices of 165 are {1,3,6,8}, with qualifying set partitions {{1,8},{3,6}}, and {{1,3,6,8}}, so 165 is in the sequence. %e A371784 The terms together with their binary expansions and binary indices begin: %e A371784 7: 111 ~ {1,2,3} %e A371784 13: 1101 ~ {1,3,4} %e A371784 15: 1111 ~ {1,2,3,4} %e A371784 22: 10110 ~ {2,3,5} %e A371784 25: 11001 ~ {1,4,5} %e A371784 27: 11011 ~ {1,2,4,5} %e A371784 30: 11110 ~ {2,3,4,5} %e A371784 31: 11111 ~ {1,2,3,4,5} %e A371784 39: 100111 ~ {1,2,3,6} %e A371784 42: 101010 ~ {2,4,6} %e A371784 45: 101101 ~ {1,3,4,6} %e A371784 47: 101111 ~ {1,2,3,4,6} %e A371784 49: 110001 ~ {1,5,6} %e A371784 51: 110011 ~ {1,2,5,6} %e A371784 54: 110110 ~ {2,3,5,6} %e A371784 59: 111011 ~ {1,2,4,5,6} %e A371784 60: 111100 ~ {3,4,5,6} %e A371784 62: 111110 ~ {2,3,4,5,6} %e A371784 63: 111111 ~ {1,2,3,4,5,6} %t A371784 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371784 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A371784 Select[Range[100],Length[Select[sps[bix[#]],SameQ@@Total/@#&]]>1&] %Y A371784 Set partitions with all equal block-sums are counted by A035470. %Y A371784 Positions of terms > 1 in A336137 and A371735. %Y A371784 The complement is A371738. %Y A371784 A000110 counts set partitions. %Y A371784 A002219 (aerated) counts biquanimous partitions, ranks A357976. %Y A371784 A048793 lists binary indices, length A000120, reverse A272020, sum A029931. %Y A371784 A070939 gives length of binary expansion. %Y A371784 A321451 counts non-quanimous partitions, ranks A321453. %Y A371784 A321452 counts quanimous partitions, ranks A321454. %Y A371784 A371789 counts non-quanimous sets, differences A371790. %Y A371784 A371796 counts quanimous sets, differences A371797. %Y A371784 Cf. A001055, A006827, A038041, A305551, A321455, A326534, A371733. %K A371784 nonn,base %O A371784 1,1 %A A371784 _Gus Wiseman_, Apr 16 2024