cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371788 Triangle read by rows where T(n,k) is the number of set partitions of {1..n} with exactly k distinct block-sums.

This page as a plain text file.
%I A371788 #7 Apr 16 2024 23:37:49
%S A371788 1,0,1,0,1,1,0,2,2,1,0,2,8,4,1,0,2,19,24,6,1,0,2,47,95,49,9,1,0,6,105,
%T A371788 363,297,93,12,1,0,12,248,1292,1660,753,158,16,1,0,11,563,4649,8409,
%U A371788 5591,1653,250,20,1,0,2,1414,15976,41264,38074,15590,3249,380,25,1
%N A371788 Triangle read by rows where T(n,k) is the number of set partitions of {1..n} with exactly k distinct block-sums.
%e A371788 The set partition {{1,3},{2},{4}} has two distinct block-sums {2,4} so is counted under T(4,2).
%e A371788 Triangle begins:
%e A371788      1
%e A371788      0     1
%e A371788      0     1     1
%e A371788      0     2     2     1
%e A371788      0     2     8     4     1
%e A371788      0     2    19    24     6     1
%e A371788      0     2    47    95    49     9     1
%e A371788      0     6   105   363   297    93    12     1
%e A371788      0    12   248  1292  1660   753   158    16     1
%e A371788      0    11   563  4649  8409  5591  1653   250    20     1
%e A371788      0     2  1414 15976 41264 38074 15590  3249   380    25     1
%e A371788 Row n = 4 counts the following set partitions:
%e A371788   .  {{1,4},{2,3}}  {{1},{2,3,4}}    {{1},{2},{3,4}}  {{1},{2},{3},{4}}
%e A371788      {{1,2,3,4}}    {{1,2},{3},{4}}  {{1},{2,3},{4}}
%e A371788                     {{1,2},{3,4}}    {{1},{2,4},{3}}
%e A371788                     {{1,3},{2},{4}}  {{1,4},{2},{3}}
%e A371788                     {{1,3},{2,4}}
%e A371788                     {{1,2,3},{4}}
%e A371788                     {{1,2,4},{3}}
%e A371788                     {{1,3,4},{2}}
%t A371788 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A371788 Table[Length[Select[sps[Range[n]], Length[Union[Total/@#]]==k&]],{n,0,5},{k,0,n}]
%Y A371788 Row sums are A000110.
%Y A371788 Column k = 1 is A035470.
%Y A371788 A version for integer partitions is A116608.
%Y A371788 For block lengths instead of sums we have A208437.
%Y A371788 A008277 counts set partitions by length.
%Y A371788 A275780 counts set partitions with distinct block-sums.
%Y A371788 A371737 counts quanimous strict partitions, non-strict A321452.
%Y A371788 A371789 counts non-quanimous sets, differences A371790.
%Y A371788 Cf. A007837, A038041, A327899, A336137, A336138, A365663, A365661, A365925.
%K A371788 nonn,tabl
%O A371788 0,8
%A A371788 _Gus Wiseman_, Apr 16 2024