A371791 Number of biquanimous subsets of {1..n}. Sets with a subset having the same sum as the complement.
1, 1, 1, 2, 4, 8, 18, 38, 82, 175, 373, 787, 1651, 3439, 7126, 14667, 30049, 61249, 124440, 251922, 508779, 1025183, 2062287, 4142644, 8312927, 16667005, 33395275, 66880828, 133892910, 267976571, 536225921, 1072842931, 2146233971, 4293248183, 8587569636, 17176654105, 34355356676, 68713584720, 137430991937, 274867311960, 549741605972, 1099492913172, 2198998307679, 4398013970156, 8796049891377, 17592130283755, 35184298506429
Offset: 0
Keywords
Examples
For S = {1,3,4,6} we have {{1,6},{3,4}}, so S is counted under a(6). The a(0) = 1 through a(6) = 18 subsets: {} {} {} {} {} {} {} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,3,4} {1,3,4} {1,3,4} {1,2,3,4} {1,4,5} {1,4,5} {2,3,5} {1,5,6} {1,2,3,4} {2,3,5} {1,2,4,5} {2,4,6} {2,3,4,5} {1,2,3,4} {1,2,3,6} {1,2,4,5} {1,2,5,6} {1,3,4,6} {2,3,4,5} {2,3,5,6} {3,4,5,6} {1,2,3,4,6} {1,2,4,5,6} {2,3,4,5,6}
Programs
-
Mathematica
biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2]; Table[Length[Select[Subsets[Range[n]],biqQ]],{n,0,15}]
Extensions
a(16) onwards from Martin Fuller, Mar 21 2025
Comments