A371792 Number of non-biquanimous subsets of {1..n}. Sets with no subset having the same sum as the complement.
0, 1, 3, 6, 12, 24, 46, 90, 174, 337, 651, 1261, 2445, 4753, 9258, 18101, 35487, 69823, 137704, 272366, 539797, 1071969, 2132017, 4245964, 8464289, 16887427, 33713589, 67336900, 134542546, 268894341, 537515903, 1074640717, 2148733325, 4296686409, 8592299548, 17183084263, 34364120060, 68725368752, 137446915007, 274888501928, 549770021804, 1099530342380, 2199048203425, 4398079052052, 8796136153039, 17592241805077, 35184445671235
Offset: 0
Keywords
Examples
The subsets of S = {1,4,6,7} have distinct sums {0,1,4,5,6,7,8,10,11,12,13,14,17,18}. Since 9 is missing, S is counted under a(7). The a(0) = 0 through a(4) = 12 subsets: . {1} {1} {1} {1} {2} {2} {2} {1,2} {3} {3} {1,2} {4} {1,3} {1,2} {2,3} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,4} {2,3,4}
Programs
-
Mathematica
biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2]; Table[Length[Select[Subsets[Range[n]],Not@*biqQ]],{n,0,10}]
Extensions
a(16) onwards from Martin Fuller, Mar 21 2025
Comments