This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371793 #9 Mar 21 2025 09:59:08 %S A371793 1,2,3,6,12,22,44,84,163,314,610,1184,2308,4505,8843,17386,34336, %T A371793 67881,134662,267431,532172,1060048,2113947,4218325,8423138,16826162, %U A371793 33623311,67205646,134351795,268621562,537124814,1074092608,2147953084,4295613139,8590784715,17181035797,34361248692,68721546255,137441586921,274881519876,549760320576,1099517861045,2199030848627,4398057100987,8796105652038,17592203866158 %N A371793 Number of non-biquanimous subsets of {1..n} containing n. %C A371793 A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976. %e A371793 The a(1) = 1 through a(5) = 12 subsets: %e A371793 {1} {2} {3} {4} {5} %e A371793 {1,2} {1,3} {1,4} {1,5} %e A371793 {2,3} {2,4} {2,5} %e A371793 {3,4} {3,5} %e A371793 {1,2,4} {4,5} %e A371793 {2,3,4} {1,2,5} %e A371793 {1,3,5} %e A371793 {2,4,5} %e A371793 {3,4,5} %e A371793 {1,2,3,5} %e A371793 {1,3,4,5} %e A371793 {1,2,3,4,5} %t A371793 biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2]; %t A371793 Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!biqQ[#]&]],{n,15}] %Y A371793 The complement is counted by A232466, differences of A371791. %Y A371793 This is the "bi-" version of A371790, differences of A371789. %Y A371793 First differences of A371792. %Y A371793 The complement is the "bi-" version of A371797, differences of A371796. %Y A371793 A002219 aerated counts biquanimous partitions, ranks A357976. %Y A371793 A006827 and A371795 count non-biquanimous partitions, ranks A371731. %Y A371793 A108917 counts knapsack partitions, ranks A299702, strict A275972. %Y A371793 A237258 aerated counts biquanimous strict partitions, ranks A357854. %Y A371793 A321142 and A371794 count non-biquanimous strict partitions. %Y A371793 A321451 counts non-quanimous partitions, ranks A321453. %Y A371793 A321452 counts quanimous partitions, ranks A321454. %Y A371793 A366754 counts non-knapsack partitions, ranks A299729, strict A316402. %Y A371793 A371737 counts quanimous strict partitions, complement A371736. %Y A371793 A371781 lists numbers with biquanimous prime signature, complement A371782. %Y A371793 A371783 counts k-quanimous partitions. %Y A371793 Cf. A035470, A064914, A365543, A365661, A365663, A366320, A365381, A367094, A371788. %K A371793 nonn %O A371793 1,2 %A A371793 _Gus Wiseman_, Apr 07 2024 %E A371793 a(16) onwards from _Martin Fuller_, Mar 21 2025