cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371796 Number of quanimous subsets of {1..n}, meaning there is more than one set partition with all equal block-sums.

This page as a plain text file.
%I A371796 #11 Mar 30 2025 04:28:31
%S A371796 0,0,0,1,3,8,19,43,94,206,439,946,1990,4204,8761,18233,37778,78151,
%T A371796 160296,328670,670193,1363543,2772436,5632801,11404156,23071507,
%U A371796 46613529,94098106,189959349,383407198,773009751
%N A371796 Number of quanimous subsets of {1..n}, meaning there is more than one set partition with all equal block-sums.
%C A371796 A finite multiset of numbers is defined to be quanimous iff it can be partitioned into two or more multisets with equal sums. Quanimous partitions are counted by A321452 and ranked by A321454.
%e A371796 The set s = {3,4,6,8,9} has set partitions {{3,4,6,8,9}} and {{3,4,8},{6,9}} with equal block-sums, so s is counted under a(9).
%e A371796 The a(3) = 1 through a(6) = 19 subsets:
%e A371796   {1,2,3}  {1,2,3}    {1,2,3}      {1,2,3}
%e A371796            {1,3,4}    {1,3,4}      {1,3,4}
%e A371796            {1,2,3,4}  {1,4,5}      {1,4,5}
%e A371796                       {2,3,5}      {1,5,6}
%e A371796                       {1,2,3,4}    {2,3,5}
%e A371796                       {1,2,4,5}    {2,4,6}
%e A371796                       {2,3,4,5}    {1,2,3,4}
%e A371796                       {1,2,3,4,5}  {1,2,3,6}
%e A371796                                    {1,2,4,5}
%e A371796                                    {1,2,5,6}
%e A371796                                    {1,3,4,6}
%e A371796                                    {2,3,4,5}
%e A371796                                    {2,3,5,6}
%e A371796                                    {3,4,5,6}
%e A371796                                    {1,2,3,4,5}
%e A371796                                    {1,2,3,4,6}
%e A371796                                    {1,2,4,5,6}
%e A371796                                    {2,3,4,5,6}
%e A371796                                    {1,2,3,4,5,6}
%t A371796 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A371796 Table[Length[Select[Subsets[Range[n]], Length[Select[sps[#],SameQ@@Total/@#&]]>1&]],{n,0,10}]
%Y A371796 The "bi-" version for integer partitions is A002219 aerated, ranks A357976.
%Y A371796 The "bi-" version for strict partitions is A237258 aerated, ranks A357854.
%Y A371796 The complement for integer partitions is A321451, ranks A321453.
%Y A371796 The version for integer partitions is A321452, ranks A321454
%Y A371796 The version for strict partitions is A371737, complement A371736.
%Y A371796 The complement is counted by A371789, differences A371790.
%Y A371796 The "bi-" version is A371791, complement A371792.
%Y A371796 First differences are A371797.
%Y A371796 A108917 counts knapsack partitions, ranks A299702, strict A275972.
%Y A371796 A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
%Y A371796 A371783 counts k-quanimous partitions.
%Y A371796 Cf. A000005, A018818, A035470, A038041, A232466, A279791, A321142, A365661, A371731, A371794, A371795.
%K A371796 nonn,more
%O A371796 0,5
%A A371796 _Gus Wiseman_, Apr 17 2024
%E A371796 a(11)-a(30) from _Bert Dobbelaere_, Mar 30 2025