cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371797 Number of quanimous subsets of {1..n} containing n, meaning there is more than one set partition with equal block-sums.

Original entry on oeis.org

0, 0, 1, 2, 5, 11, 24, 51, 112, 233, 507, 1044, 2214, 4557, 9472, 19545, 40373, 82145, 168374, 341523, 693350, 1408893, 2860365, 5771355, 11667351, 23542022, 47484577, 95861243, 193447849, 389602553
Offset: 1

Views

Author

Gus Wiseman, Apr 17 2024

Keywords

Comments

A finite multiset of numbers is defined to be quanimous iff it can be partitioned into two or more multisets with equal sums. Quanimous partitions are counted by A321452 and ranked by A321454.

Examples

			The set s = {3,4,6,8,9} has set partitions {{3,4,6,8,9}} and {{3,4,8},{6,9}} with equal block-sums, so s is counted under a(9).
The a(1) = 0 through a(6) = 11 subsets:
  .  .  {1,2,3}  {1,3,4}    {1,4,5}      {1,5,6}
                 {1,2,3,4}  {2,3,5}      {2,4,6}
                            {1,2,4,5}    {1,2,3,6}
                            {2,3,4,5}    {1,2,5,6}
                            {1,2,3,4,5}  {1,3,4,6}
                                         {2,3,5,6}
                                         {3,4,5,6}
                                         {1,2,3,4,6}
                                         {1,2,4,5,6}
                                         {2,3,4,5,6}
                                         {1,2,3,4,5,6}
		

Crossrefs

The "bi-" version is A232466, complement A371793.
The complement is counted by A371790.
First differences of A371796, complement A371789.
A371736 counts non-quanimous strict partitions.
A371737 counts quanimous strict partitions.
A371783 counts k-quanimous partitions.
A371791 counts biquanimous subsets, complement A371792.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Length[Select[sps[#],SameQ@@Total/@#&]]>1&]],{n,10}]

Extensions

a(11)-a(30) from Martin Fuller, Apr 01 2025