cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A372337 Rectangular array, read by descending antidiagonals: row n shows the numbers m > 1 in whose prime factorization p(1)^e(1) * p(2)^e(2) * ... * p(k)^e(k), all e(i) are <= 2 and the number of 0's in the multiset {e(i)} is n-1.

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 12, 10, 14, 7, 18, 15, 21, 22, 11, 30, 20, 25, 33, 26, 13, 36, 42, 28, 44, 39, 34, 17, 60, 45, 35, 49, 52, 51, 38, 19, 90, 50, 63, 55, 65, 68, 57, 46, 23, 150, 70, 66, 77, 91, 85, 76, 69, 58, 29, 180, 75, 98, 78, 102, 114, 95, 92, 87, 62
Offset: 1

Views

Author

Clark Kimberling, Apr 28 2024

Keywords

Examples

			28 = 2^2 * 3^0 * 5^0 * 7^1, so {e(i)} is {0,0,1,2}, so 28 is in row 3.
Corner:
    2   4   6  12  18  30  36  60
    3   9  10  15  20  42  45  50
    5  14  21  25  28  35  63  66
    7  22  33  44  49  55  77  78
   11  26  39  52  65  91 102 117
   13  34  51  68  85 114 119 153
   17  38  57  76  95 133 138 171
   19  46  69  92 115 161 174 207
   23  58  87 116 145 186 203 261
		

Crossrefs

Cf. A000040 (the primes, column 1), A371799.

Programs

  • Mathematica
    exps := Map[#[[2]] &, Sort[Join[#, Complement[Map[{Prime[#], 0} &, Range[PrimePi[Last[#][[1]]]]], Map[{#[[1]], 0} &, #]]]] &[FactorInteger[#]]] &;
    m = Map[Transpose[#][[1]] &, GatherBy[Map[{#[[1]], Count[#[[2]], 0]} &,
    Select[Map[{#, exps[#]} &, Range[2, 7000]], Max[#[[2]]] <= 2 &]], #[[2]] &]];
    z = 12; r = Table[Take[m[[n]], z], {n, 1, z}]
    Grid[r]  (* array *)
    w[n_, k_] := r[[n]][[k]]
    Table[w[n - k + 1, k], {n, z}, {k, n, 1, -1}] // Flatten  (* sequence *)
    (* Peter J. C. Moses, Mar 21 2024 *)
Showing 1-1 of 1 results.