This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371811 #20 May 03 2024 12:13:01 %S A371811 6,10,14,15,22,26,33,34,38,39,46,55,57,58,62,65,69,74,77,82,86,87,91, %T A371811 94,95,106,111,118,122,133,134,141,142,143,145,146,158,159,166,177, %U A371811 178,183,185,194,201,202,203,205,206,209,213,214,218,221,226 %N A371811 Semiprimes q*p such that the congruence 2^x == q (mod p) is solvable, where q < p. %F A371811 Trivial bounds: n log n / log log n << a(n) << n log n. - _Charles R Greathouse IV_, Apr 10 2024 %p A371811 filter:= proc(n) local F,p,q,x; %p A371811 F:= ifactors(n)[2]; %p A371811 if F[..,2] <> [1,1] then return false fi; %p A371811 p:= max(F[..,1]); q:= min(F[..,1]); %p A371811 [msolve(2^x = q, p)] <> [] %p A371811 end proc: %p A371811 select(filter, [$6 .. 1000]); # _Robert Israel_, Apr 10 2024 %t A371811 okQ[n_] := Module[{f, p, q, s}, %t A371811 f = FactorInteger[n]; %t A371811 If[f[[All, 2]] != {1, 1}, False, %t A371811 {q, p} = f[[All, 1]]; %t A371811 s = Solve[Mod[2^x, p] == q, x, Integers]; %t A371811 s != {}]]; %t A371811 Select[Range[6, 1000], okQ] (* _Jean-François Alcover_, May 03 2024 *) %o A371811 (PARI) list(lim)=my(v=List()); forprime(p=3,lim\2, forprime(q=2,min(p-1,lim\p), if(znlog(q, Mod(2, p)) != [], listput(v,p*q)))); Set(v) \\ _Charles R Greathouse IV_, Apr 10 2024 %o A371811 (Python) %o A371811 from itertools import count, islice %o A371811 from sympy import factorint, discrete_log %o A371811 def A371811_gen(startvalue=1): # generator of terms >= startvalue %o A371811 for n in count(max(startvalue,1)): %o A371811 f = factorint(n) %o A371811 if len(f) == 2 and max(f.values())==1: %o A371811 q, p = sorted(f.keys()) %o A371811 try: %o A371811 discrete_log(p,q,2) %o A371811 except: %o A371811 continue %o A371811 yield n %o A371811 A371811_list = list(islice(A371811_gen(),20)) # _Chai Wah Wu_, Apr 10 2024 %Y A371811 Subsequence of A006881. Apart from the first term, A100484 is a subsequence. %Y A371811 Cf. A001915, A001916. %K A371811 nonn %O A371811 1,1 %A A371811 _Juri-Stepan Gerasimov_, Apr 06 2024