cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371821 Composite numbers which divide the concatenation of their ascending ordered prime factors, with repetition, when written in binary.

This page as a plain text file.
%I A371821 #30 Apr 13 2024 01:57:59
%S A371821 85329,177904587,333577497
%N A371821 Composite numbers which divide the concatenation of their ascending ordered prime factors, with repetition, when written in binary.
%C A371821 The base 2 version of A259047. Assuming a(4) exists it is greater than 10^10.
%C A371821 a(4) <= 55133857902732922904331439521901. - _Chai Wah Wu_, Apr 12 2024
%C A371821 a(1), a(3), the bound on a(4) above, and larger terms can be generated using an adaptation of the method of J. K. Andersen referenced in A259047; see linked Python program for an implementation and two more terms. - _Michael S. Branicky_, Apr 12 2024
%H A371821 Michael S. Branicky, <a href="/A371821/a371821.txt">Python program generating terms in A371821</a>
%e A371821 177904587 is a term as 177904587 = 3_10 * 7_10 * 103_10 * 233_10 * 353_10 = 11_2 * 111_2 * 1100111_2 * 11101001_2 * 101100001_2 = "11111110011111101001101100001"_2 = 533713761_10, which is divisible by 177904587.
%o A371821 (Python)
%o A371821 from itertools import count, islice
%o A371821 from sympy import factorint
%o A371821 def A371821_gen(startvalue=1): # generator of terms >= startvalue
%o A371821     for n in count(max(startvalue,1)):
%o A371821         f = sorted(factorint(n,multiple=True))
%o A371821         if len(f) > 1:
%o A371821             c = 0
%o A371821             for p in f:
%o A371821                 c = ((c<<p.bit_length())+p)%n
%o A371821             if not c:
%o A371821                 yield n
%o A371821 A371821_list = list(islice(A371821_gen(),3)) # _Chai Wah Wu_, Apr 11 2024
%o A371821 (Python)
%o A371821 from sympy import factorint, isprime
%o A371821 def ok(n): return not isprime(n) and int("".join(bin(p)[2:]*e for p, e in factorint(n).items()), 2)%n == 0 # _Michael S. Branicky_, Apr 12 2024
%Y A371821 Cf. A027746, A004676, A259047, A371641.
%K A371821 nonn,base,more,bref
%O A371821 1,1
%A A371821 _Scott R. Shannon_, Apr 07 2024