This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371821 #30 Apr 13 2024 01:57:59 %S A371821 85329,177904587,333577497 %N A371821 Composite numbers which divide the concatenation of their ascending ordered prime factors, with repetition, when written in binary. %C A371821 The base 2 version of A259047. Assuming a(4) exists it is greater than 10^10. %C A371821 a(4) <= 55133857902732922904331439521901. - _Chai Wah Wu_, Apr 12 2024 %C A371821 a(1), a(3), the bound on a(4) above, and larger terms can be generated using an adaptation of the method of J. K. Andersen referenced in A259047; see linked Python program for an implementation and two more terms. - _Michael S. Branicky_, Apr 12 2024 %H A371821 Michael S. Branicky, <a href="/A371821/a371821.txt">Python program generating terms in A371821</a> %e A371821 177904587 is a term as 177904587 = 3_10 * 7_10 * 103_10 * 233_10 * 353_10 = 11_2 * 111_2 * 1100111_2 * 11101001_2 * 101100001_2 = "11111110011111101001101100001"_2 = 533713761_10, which is divisible by 177904587. %o A371821 (Python) %o A371821 from itertools import count, islice %o A371821 from sympy import factorint %o A371821 def A371821_gen(startvalue=1): # generator of terms >= startvalue %o A371821 for n in count(max(startvalue,1)): %o A371821 f = sorted(factorint(n,multiple=True)) %o A371821 if len(f) > 1: %o A371821 c = 0 %o A371821 for p in f: %o A371821 c = ((c<<p.bit_length())+p)%n %o A371821 if not c: %o A371821 yield n %o A371821 A371821_list = list(islice(A371821_gen(),3)) # _Chai Wah Wu_, Apr 11 2024 %o A371821 (Python) %o A371821 from sympy import factorint, isprime %o A371821 def ok(n): return not isprime(n) and int("".join(bin(p)[2:]*e for p, e in factorint(n).items()), 2)%n == 0 # _Michael S. Branicky_, Apr 12 2024 %Y A371821 Cf. A027746, A004676, A259047, A371641. %K A371821 nonn,base,more,bref %O A371821 1,1 %A A371821 _Scott R. Shannon_, Apr 07 2024