cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371824 Decimal expansion of Pi^(1/2)*Gamma(1/10)/(5*Gamma(3/5)).

Original entry on oeis.org

2, 2, 6, 4, 6, 1, 7, 3, 9, 5, 0, 4, 3, 1, 5, 0, 7, 4, 4, 2, 9, 1, 1, 8, 8, 9, 9, 0, 3, 1, 3, 9, 9, 2, 6, 0, 1, 3, 9, 8, 3, 2, 7, 0, 9, 2, 6, 5, 0, 6, 7, 5, 0, 9, 0, 4, 8, 1, 2, 2, 8, 7, 8, 7, 5, 0, 6, 2, 4, 0, 8, 5, 5, 4, 2, 5, 1, 0, 5, 8, 0, 2, 9, 2, 2, 4, 9, 9, 8, 3, 4, 7, 4, 8, 4, 0, 0, 7, 2, 0, 1, 4, 5, 4, 1, 4, 6, 0, 7, 6, 5
Offset: 1

Views

Author

Takayuki Tatekawa, Apr 07 2024

Keywords

Comments

Constants from generalized Pi integrals: the case of n=10.

Examples

			2.264617395043150744291188990313...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2*Sqrt[Pi]/10*Gamma[1/10]/Gamma[3/5], 10, 5001][[1]]
    RealDigits[GoldenRatio * Gamma[1/5] * Gamma[2/5]^2 / (2^(6/5) * Sqrt[5] * Pi), 10, 120][[1]] (* Vaclav Kotesovec, Apr 07 2024 *)

Formula

Equals 2*Integral_{x=0..1} dx/sqrt(1-x^10).
Equals phi * Gamma(1/5) * Gamma(2/5)^2 / (2^(6/5) * sqrt(5) * Pi), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Apr 07 2024