cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371835 Triangle read by rows: T(n,k) is the number of points (x,y,z) satisfying |x|+|y|+|z|<=n and max(|x|,|y|,|z|)<=k; 0<=k<=n.

This page as a plain text file.
%I A371835 #35 Oct 14 2024 11:21:25
%S A371835 1,1,7,1,19,25,1,27,57,63,1,27,93,123,129,1,27,117,195,225,231,1,27,
%T A371835 125,263,341,371,377,1,27,125,311,461,539,569,575,1,27,125,335,569,
%U A371835 719,797,827,833,1,27,125,343,649,895,1045,1123,1153,1159
%N A371835 Triangle read by rows: T(n,k) is the number of points (x,y,z) satisfying |x|+|y|+|z|<=n and max(|x|,|y|,|z|)<=k; 0<=k<=n.
%C A371835 For all pairs of positive integers (a,b), T(a*m,b*m) satisfies a cubic polynomial in m.
%H A371835 Sela Fried, <a href="/A371835/a371835_2.pdf">On a problem related to the integer lattice and its layers</a>, 2024.
%H A371835 Sela Fried, <a href="https://arxiv.org/abs/2410.07237">Proofs of some Conjectures from the OEIS</a>, arXiv:2410.07237 [math.NT], 2024. See p. 5.
%F A371835 T(n,k)   =    8*n^3 +  12*n^2 +  6*n + 1    = A016755(k) if k <= n/3.
%F A371835 T(m,m)   =   (4*n^3 +   6*n^2 +  8*n + 3)/3 = A001845(m).
%F A371835 T(2m,m)  =  (20*n^3 +  24*n^2 + 10*n + 3)/3 = A371532(m).
%F A371835 T(3m,2m) =   32*n^3 +  18*n^2 +  6*n + 1    = A371515(m).
%F A371835 T(4m,3m) = (244*n^3 +  96*n^2 + 26*n + 3)/3.
%F A371835 T(5m,2m) = (188*m^3 + 132*m^2 + 28*m + 3)/3.
%F A371835 T(5m,3m) = (404*m^3 + 150*m^2 + 28*m + 3)/3.
%F A371835 T(5m,4m) = (488*m^3 + 150*m^2 + 34*m + 3)/3.
%F A371835 Conjectures:
%F A371835 T(n,k) = (-84*k^3 + 108*k^2*n - 72*k^2 - 36*k*n^2 + 72*k*n - 6*k + 4*n^3 - 12*n^2 + 8*n + 3)/3 for (n-2)/3 <= k <= n/2.
%F A371835 T(n,k) = (12*k^3 - 36*k^2*n + 36*k*n^2 + 6*k - 8*n^3 + 6*n^2 + 2*n + 3)/3 for (n-1)/2 <= k <= n.
%F A371835 The two conjectures are true. See links. - _Sela Fried_, Jul 05 2024
%e A371835 Table begins:
%e A371835   n\k| 0  1   2   3   4    5    6    7    8    9   10
%e A371835   ---+-----------------------------------------------
%e A371835    0 | 1
%e A371835    1 | 1  7
%e A371835    2 | 1 19  25
%e A371835    3 | 1 27  57  63
%e A371835    4 | 1 27  93 123 129
%e A371835    5 | 1 27 117 195 225  231
%e A371835    6 | 1 27 125 263 341  371  377
%e A371835    7 | 1 27 125 311 461  539  569  575
%e A371835    8 | 1 27 125 335 569  719  797  827  833
%e A371835    9 | 1 27 125 343 649  895 1045 1123 1153 1159
%e A371835   10 | 1 27 125 343 697 1051 1297 1447 1525 1555 1561
%K A371835 nonn,tabl
%O A371835 0,3
%A A371835 _Peter Kagey_, Apr 07 2024