A371839 Number of integer partitions of n with biquanimous multiplicities.
1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 22, 29, 38, 52, 66, 88, 114, 147, 186, 245, 302, 389, 486, 613, 757, 960, 1172, 1466, 1790, 2220, 2695, 3332, 4013, 4926, 5938, 7228, 8660, 10519, 12545, 15151, 18041, 21663, 25701, 30774, 36361, 43359, 51149, 60720, 71374
Offset: 0
Keywords
Examples
The partition y = (6,2,1,1) has multiplicities (1,1,2), which are biquanimous because we have the partition ((1,1),(2)), so y is counted under a(10). The a(0) = 1 through a(10) = 11 partitions: () . . (21) (31) (32) (42) (43) (53) (54) (64) (41) (51) (52) (62) (63) (73) (2211) (61) (71) (72) (82) (3211) (3221) (81) (91) (3311) (3321) (3322) (4211) (4221) (4321) (4311) (4411) (5211) (5221) (222111) (5311) (6211) (322111)
Crossrefs
Programs
-
Mathematica
biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2]; Table[Length[Select[IntegerPartitions[n], biqQ[Length/@Split[#]]&]],{n,0,30}]
Comments