A371840 Number of integer partitions of n with non-biquanimous multiplicities.
0, 1, 2, 2, 4, 5, 8, 11, 16, 21, 31, 40, 55, 72, 97, 124, 165, 209, 271, 343, 441, 547, 700, 866, 1089, 1345, 1679, 2050, 2546, 3099, 3814, 4622, 5654, 6811, 8297, 9957, 12039, 14409, 17355, 20666, 24793, 29432, 35133, 41598, 49474, 58360, 69197, 81395, 96124
Offset: 0
Keywords
Examples
The partition y = (6,2,1,1) has multiplicities (1,1,2), which are biquanimous because we have the partition ((1,1),(2)), so y is not counted under a(10). The a(1) = 1 through a(8) = 16 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (221) (33) (322) (44) (211) (311) (222) (331) (332) (1111) (2111) (321) (421) (422) (11111) (411) (511) (431) (3111) (2221) (521) (21111) (4111) (611) (111111) (22111) (2222) (31111) (5111) (211111) (22211) (1111111) (32111) (41111) (221111) (311111) (2111111) (11111111)
Programs
-
Mathematica
biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2]; Table[Length[Select[IntegerPartitions[n], !biqQ[Length/@Split[#]]&]],{n,0,30}]
Comments