This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371866 #13 Mar 29 2025 20:07:35 %S A371866 3,7,17,47,2207,97415813466381445596089 %N A371866 Primes of the form Fibonacci(m^(k+1))/Fibonacci(m^k), where m > 1 and k >= 1. %C A371866 a(7) > 10^25000 if it exists. %C A371866 m must be prime, as Fibonacci((a*b)^(k+1))/Fibonacci((a*b)^k) = (Fibonacci((a*b)^(k+1))/Fibonacci(a^k * b^(k+1))) * Fibonacci(a^k * b^(k+1))/Fibonacci((a*b)^k). %e A371866 a(1) = 3 = F(2^2)/F(2^1) where F = Fibonacci. %e A371866 a(2) = 7 = F(2^3)/F(2^2). %e A371866 a(3) = 17 = F(3^2)/F(3^1). %e A371866 a(4) = 47 = F(2^4)/F(2^3). %e A371866 a(5) = 2207 = F(2^5)/F(2^4). %e A371866 a(6) = 97415813466381445596089 = F(11^2)/F(11^1). %p A371866 N:= 10^1000: # for terms < N %p A371866 R:= NULL: F:= combinat:-fibonacci: %p A371866 p:= 1: %p A371866 do %p A371866 p:= nextprime(p); %p A371866 v:= F(p); %p A371866 for k from 2 do %p A371866 w:= v; %p A371866 v:= F(p^k); %p A371866 r:= v/w; %p A371866 if r > N then break fi; %p A371866 if isprime(r) then R:= R, r fi; %p A371866 od; %p A371866 if k = 2 then break fi; %p A371866 od: %p A371866 sort([R]); %Y A371866 Primes in A181419. %Y A371866 Cf. A000045. %K A371866 nonn %O A371866 1,1 %A A371866 _Robert Israel_, Apr 09 2024