cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371881 Decimal expansion of Gamma(1/20).

This page as a plain text file.
%I A371881 #35 Apr 21 2024 07:35:37
%S A371881 1,9,4,7,0,0,8,5,3,1,1,2,5,5,5,1,2,8,6,4,0,4,7,3,2,0,9,6,7,7,2,7,1,2,
%T A371881 7,5,4,5,6,3,0,4,1,9,5,8,3,3,4,1,9,7,5,6,8,1,0,8,2,7,8,3,7,5,5,3,6,4,
%U A371881 5,5,6,2,1,9,5,6,3,6,4,9,1,0,7,9,0,7,7,7,4,9,8,4,3,7,7,4,1,4,2,3,0,9,6,5,7
%N A371881 Decimal expansion of Gamma(1/20).
%H A371881 <a href="/index/Ga#gamma_function">Index to sequences related to gamma function</a>
%F A371881 Equals 2^(33/40) * 5^(5/16) * (1 + sqrt(5))^(1/8) * sqrt(5^(1/4) + sqrt(2 + sqrt(5))) * sqrt(Pi*Gamma(1/10)) * QPochhammer(exp(-2*sqrt(5)*Pi)) / exp(sqrt(5)*Pi/12).
%e A371881 19.4700853112555128640473209677271275456304195833419756810827837553645...
%p A371881 evalf(GAMMA(1/20), 130);  # _Alois P. Heinz_, Apr 15 2024
%t A371881 RealDigits[Gamma[1/20], 10, 120][[1]]
%t A371881 RealDigits[2^(33/40) * 5^(5/16) * (1 + Sqrt[5])^(1/8) * Sqrt[5^(1/4) + Sqrt[2 + Sqrt[5]]] * Sqrt[Pi * Gamma[1/10]] * QPochhammer[E^(-2*Sqrt[5]*Pi)] / E^(Sqrt[5]*Pi/12), 10, 120][[1]]
%Y A371881 Cf. A073005, A175380, A256191, A203140, A371983.
%K A371881 nonn,cons
%O A371881 2,2
%A A371881 _Vaclav Kotesovec_, Apr 15 2024