A371884 Irregular triangle read by rows in which row n >= 2 lists the divisors d of n such that d^n mod n = d.
1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 4, 1, 1, 7, 1, 5, 1, 1, 1, 9, 1, 1, 5, 1, 7, 1, 11, 1, 1, 1, 1, 13, 1, 1, 4, 1, 1, 6, 10, 15, 1, 1, 1, 11, 1, 17, 1, 1, 9, 1, 1, 19, 1, 13, 1, 1, 1, 7, 21, 1, 1, 1, 9, 1, 23, 1, 1, 16, 1, 1, 25, 1, 17, 1, 13, 1, 1, 27, 1, 11, 1, 8, 1, 19, 1, 29, 1, 1, 1, 1, 31, 1, 1, 1, 5, 13
Offset: 2
Examples
Triangle begins: 1; 1; 1; 1; 1, 3; 1; 1; 1; 1, 5; 1; 1, 4; 1; 1, 7; 1, 5; 1; 1; 1, 9; 1; 1, 5; 1, 7; 1, 11; 1; 1; 1; 1, 13; 1; 1, 4; 1; 1, 6, 10, 15; ...
Links
- Robert Israel, Table of n, a(n) for n = 2..18962 (rows 2 to 10000, flattened)
Programs
-
Magma
[[d: d in Divisors(n) | d^n mod n eq d]: n in [2..65]];
-
Maple
f:= proc(n) op(sort(convert(select(d -> d^n mod n = d, numtheory:-divisors(n)),list))) end proc: for n from 2 to 100 do f(n) od; # Robert Israel, May 11 2025
-
Mathematica
row[n_] := Select[Divisors[n], PowerMod[#, n, n] == # &]; Array[row, 64, 2] // Flatten (* Amiram Eldar, Apr 11 2024 *)