cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371884 Irregular triangle read by rows in which row n >= 2 lists the divisors d of n such that d^n mod n = d.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 4, 1, 1, 7, 1, 5, 1, 1, 1, 9, 1, 1, 5, 1, 7, 1, 11, 1, 1, 1, 1, 13, 1, 1, 4, 1, 1, 6, 10, 15, 1, 1, 1, 11, 1, 17, 1, 1, 9, 1, 1, 19, 1, 13, 1, 1, 1, 7, 21, 1, 1, 1, 9, 1, 23, 1, 1, 16, 1, 1, 25, 1, 17, 1, 13, 1, 1, 27, 1, 11, 1, 8, 1, 19, 1, 29, 1, 1, 1, 1, 31, 1, 1, 1, 5, 13
Offset: 2

Views

Author

Juri-Stepan Gerasimov, Apr 10 2024

Keywords

Examples

			Triangle begins:
    1;
    1;
    1;
    1;
    1, 3;
    1;
    1;
    1;
    1, 5;
    1;
    1, 4;
    1;
    1, 7;
    1, 5;
    1;
    1;
    1, 9;
    1;
    1, 5;
    1, 7;
    1, 11;
    1;
    1;
    1;
    1, 13;
    1;
    1, 4;
    1;
    1, 6, 10, 15;
    ...
		

Crossrefs

Programs

  • Magma
    [[d: d in Divisors(n) | d^n mod n eq d]: n in [2..65]];
  • Maple
    f:= proc(n) op(sort(convert(select(d -> d^n mod n = d, numtheory:-divisors(n)),list))) end proc:
    for n from 2 to 100 do f(n) od; # Robert Israel, May 11 2025
  • Mathematica
    row[n_] := Select[Divisors[n], PowerMod[#, n, n] == # &]; Array[row, 64, 2] // Flatten (* Amiram Eldar, Apr 11 2024 *)