A371885 a(n) is the least number k such that the sum of the final digits of the prime-power divisors of k (including 1) is n.
1, 11, 2, 3, 33, 5, 4, 7, 15, 12, 21, 20, 9, 28, 8, 76, 49, 24, 36, 27, 16, 54, 32, 48, 135, 80, 64, 112, 240, 192, 336, 320, 144, 216, 128, 1216, 784, 384, 576, 432, 256, 864, 512, 768, 2160, 1280, 1024, 1792, 3840, 3072, 5376, 5120, 2304, 3456, 2048, 19456, 12544, 6144, 9216, 6912, 4096, 13824
Offset: 1
Examples
a(17) = 49 because the prime-power divisors of 49 are 1, 7 and 49, the sum of their final digits is 1 + 7 + 9 = 17, and 49 is the least number that works.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16).
Programs
-
Maple
f:= proc(n) local F,i,j,t; F:= ifactors(n)[2]; 1 + add(add(F[i,1]^j mod 10, j = 1 .. F[i,2]),i=1..nops(F)) end proc: V:= Vector(100): count:= 0: for n from 1 do v:= f(n); if v <= 100 and V[v] = 0 then V[v]:= n; count:= count+1; if count = 100 then break fi fi od: convert(V,list);
Formula
G.f.: (1 + 11*x + 2*x^2 + 3*x^3 + 33*x^4 + 5*x^5 + 4*x^6 + 7*x^7 + 15*x^8 + 12*x^9 + 21*x^10 + 20*x^11 + 9*x^12 + 28*x^13 + 8*x^14 + 76*x^15 + 49*x^16 + 24*x^17 + 36*x^18 + 27*x^19 - 122*x^21 - 393*x^24 - 232*x^33)/(1 - 16*x^20).
a(n + 20) = 16 * a(n) for n >= 15.
Comments