cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371896 a(n) is the length of the uninterrupted sequence of primes generated by the polynomial f(x) = x^2 + x + p for x=0,1,..., where p=A001359(n).

This page as a plain text file.
%I A371896 #46 Jun 02 2024 14:40:20
%S A371896 2,4,10,16,2,40,2,2,4,3,2,2,2,3,2,4,2,2,2,3,5,2,2,3,2,2,2,2,5,2,2,3,2,
%T A371896 3,3,2,2,2,2,4,2,2,7,2,3,2,5,2,4,4,6,2,2,2,2,2,3,2,2,2,3,2,3,2,2,2,2,
%U A371896 3,3,2,2,2,2,2,3,5,2,2,2,2,2,2,2,2,3,2
%N A371896 a(n) is the length of the uninterrupted sequence of primes generated by the polynomial f(x) = x^2 + x + p for x=0,1,..., where p=A001359(n).
%C A371896 p=A001359(n) is the smaller prime of a twin prime pair so that f(0) = p and f(1) = p+2 are both primes so a(n) >= 2 and this sequence is the terms >= 2 in A208936.
%D A371896 L. Euler, Nouveaux Mémoires de l'Académie royale des Sciences, 1772, p. 36.
%H A371896 Peter Rowlett, <a href="/A371896/b371896.txt">Table of n, a(n) for n = 1..10000</a>
%e A371896 For n=6, p = A001359(n) = 41 and f(x) = x^2 + x + 41 is Euler's polynomial which generates primes f(x) for x=0,1,2,...,39, which is 40 terms so a(6) = 40 (cf. A202018).
%t A371896 A001359[1] = 3;
%t A371896 A001359[n_] := A001359[n] = (p = NextPrime[A001359[n - 1]];
%t A371896   While[!PrimeQ[p + 2], p = NextPrime[p]]; p)
%t A371896 A371896[n_] := With[{p = A001359@n}, k = 1;
%t A371896   While[PrimeQ[k^2 + k + p], k++]; k]
%t A371896 (* _Leo C. Stein_, May 09 2024 *)
%o A371896 (C++)
%o A371896 #include <iostream>
%o A371896 using namespace std;
%o A371896 bool isPrime(int number){
%o A371896     if(number < 2) return false;
%o A371896     if(number == 2) return true;
%o A371896     if(number % 2 == 0) return false;
%o A371896     for(int i=3; (i*i)<=number; i+=2){
%o A371896         if(number % i == 0) return false;
%o A371896     }
%o A371896     return true;
%o A371896 }
%o A371896 int main() {
%o A371896     int x;
%o A371896     for (int p=2; p<100000000; p++) {
%o A371896         if (isPrime(p)) {
%o A371896             x=1;
%o A371896             while (isPrime(x*x+x+p)) {
%o A371896                 x++;
%o A371896             }
%o A371896             if (x>1) {
%o A371896                 cout << x << ", ";
%o A371896             }
%o A371896         }
%o A371896     }
%o A371896     return 0;
%o A371896 }
%Y A371896 Cf. A001359, A202018, A208936.
%K A371896 nonn
%O A371896 1,1
%A A371896 _Peter Rowlett_, Apr 11 2024