This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371900 #15 Apr 13 2024 23:17:03 %S A371900 406,766,988,1036,1072,1138,1246,1396,1402,1456,1500,1642,1738,1762, %T A371900 1768,1816,1918,1926,1942,2076,2116,2158,2182,2278,2506,2716,2746, %U A371900 2812,2866,2920,2992,3076,3148,3172,3286,3316,3382,3496,3568,3682,3706,3712,3742,3762 %N A371900 Numbers k such that k+1 is composite and A371641(k) != p^2 where p = A020639(k+1) is the smallest prime factor of k+1. %C A371900 If k+1 is composite, then A371641(k) <= A020639(k+1)^2. This sequence lists numbers k where the inequality is strict. %H A371900 Chai Wah Wu, <a href="/A371900/b371900.txt">Table of n, a(n) for n = 1..10000</a> %o A371900 (Python) %o A371900 from itertools import count, islice %o A371900 from sympy import isprime, primefactors, factorint, integer_log %o A371900 def A371900_gen(startvalue=2): # generator of terms >= startvalue %o A371900 for n in count(max(startvalue,2)): %o A371900 if not isprime(n+1): %o A371900 q = min(primefactors(n+1)) %o A371900 for m in range(4,q**2): %o A371900 f = factorint(m) %o A371900 if sum(f.values()) > 1: %o A371900 c = 0 %o A371900 for p in sorted(f): %o A371900 a = pow(n,integer_log(p,n)[0]+1,m) %o A371900 for _ in range(f[p]): %o A371900 c = (c*a+p)%m %o A371900 if not c: %o A371900 yield n %o A371900 break %o A371900 A371900_list = list(islice(A371900_gen(),30)) %Y A371900 Cf. A020639, A027746, A259047, A322843, A248915, A371641. %K A371900 nonn,base %O A371900 1,1 %A A371900 _Chai Wah Wu_, Apr 11 2024