This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371903 #39 Apr 22 2025 16:18:31 %S A371903 0,1,3,5,15,44,134,427,1408,4753,16321,56812,200046,711425,2551886, %T A371903 9222147,33544682,122712465,451169747,1666248405,6178586630, %U A371903 22994275870,85859249486,321562877934,1207665205311,4547078084804 %N A371903 Total number of levels in all Dyck paths of semilength n containing exactly 2 path nodes. %H A371903 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %e A371903 a(3) = 3 + 2 + 0 + 0 + 0 = 5: %e A371903 1 %e A371903 _2 /\ _2 1 1 %e A371903 _2 / \ 3 /\/\ 3 /\ 3 /\ 3 %e A371903 _2 / \ _2 / \ 3 / \/\ 3 /\/ \ 4 /\/\/\ . %p A371903 g:= proc(x, y, p) (h-> `if`(x=0, add(`if`(coeff(h, z, i)=2, 1, 0), %p A371903 i=0..degree(h)), b(x, y, h)))(p+`if`(coeff(p, z, y)<3, z^y, 0)) %p A371903 end: %p A371903 b:= proc(x, y, p) option remember; `if`(y+2<=x, %p A371903 g(x-1, y+1, p), 0)+`if`(y>0, g(x-1, y-1, p), 0) %p A371903 end: %p A371903 a:= n-> g(2*n, 0$2): %p A371903 seq(a(n), n=0..18); %Y A371903 Column k=2 of A371928. %Y A371903 Cf. A000108, A051485, A152880. %K A371903 nonn,more %O A371903 0,3 %A A371903 _Alois P. Heinz_, Apr 13 2024