cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371907 a(n) = sum of 2^(k-1) such that floor(n/prime(k)) is even.

This page as a plain text file.
%I A371907 #10 May 05 2024 19:51:28
%S A371907 0,0,0,1,1,2,2,3,1,4,4,7,7,14,8,9,9,10,10,15,5,20,20,23,19,50,48,57,
%T A371907 57,62,62,63,45,108,96,99,99,226,192,197,197,206,206,223,217,472,472,
%U A371907 475,467,470,404,437,437,438,418,427,297,808,808,815,815,1838,1828
%N A371907 a(n) = sum of 2^(k-1) such that floor(n/prime(k)) is even.
%C A371907 This is a transform of A372007(n) = s(n). Write the prime indices of k factors prime(k) | s(n) instead as 2^(k-1) and take the sum for all primes p | s(n). Hence, s(14) = 105 = 3*5*7 becomes a(14) = 2^1 + 2^2 + 2^3 = 2 + 4 + 8 = 14.
%H A371907 Michael De Vlieger, <a href="/A371907/b371907.txt">Table of n, a(n) for n = 1..10000</a>
%H A371907 Michael De Vlieger, <a href="https://doi.org/10.13140/RG.2.2.10066.36806">"Tiger Stripe" Factors of Primorials</a>, ResearchGate, 2024.
%H A371907 <a href="https://oeis.org/A372007/a372007.png">Plot powers 2^(i-1) that sum to a(n) at (x,y) = (n,i)</a> for n = 1..2048, 12X vertical exaggeration.
%F A371907 a(n) = A357215(n) - A371906(n).
%e A371907 a(1) = 0 since n = 1 is the empty product.
%e A371907 a(2) = 0 since for n = prime(1) = 2, floor(2/2) = 1 is odd. Therefore a(2) = 0.
%e A371907 a(3) = 0 since for n = 3 and prime(1) = 2, floor(3/2) = 1 is odd, and for prime(2) = 3, floor(3/3) = 1 is odd. Hence a(3) = 0.
%e A371907 a(4) = 1 since for n = 4 and prime(1) = 2, floor(4/2) = 2 is even, but for prime(2) = 3, floor(4/3) = 1 is odd. Therefore, a(4) = 2^(1-1) = 1.
%e A371907 a(8) = 1 since for n = 8, both floor(8/2) and floor(8/3) are even, but both floor(8/5) and floor(8/7) are odd. Therefore, a(8) = 2^(1-1) + 2^(2-1) = 1 + 2 = 3, etc.
%e A371907 Table relating a(n) with b(n), s(n), and t(n), diagramming powers of 2 with "x" that sum to a(n) or b(n), or prime factors with "x" that produce s(n) or t(n). Sequences s(n) = A372007(n), t(n) = A372000(n), c(n) = A034386(n), b(n) = A371906(n), and c(n) = A357215(n) = a(n) + b(n). Column A (at top) shows powers of 2 that sum to a(n), with B same for b(n), while column S represents prime factors of s(n), T same of t(n).
%e A371907       [A] 2^k     [B] 2^k
%e A371907    n   0123  a(n)  012345  b(n)   c(n)   s(n)   t(n)  v(n)
%e A371907   --------------------------------------------------------
%e A371907    1   .       0   .         0   2^0-1     1      1   P(0)
%e A371907    2   .       0   x         1   2^1-1     1      2   P(1)
%e A371907    3   .       0   xx        3   2^2-1     1      6   P(2)
%e A371907    4   x       1   .x        2   2^2-1     2      3   P(2)
%e A371907    5   x       1   .xx       6   2^3-1     2     15   P(3)
%e A371907    6   .x      2   x.x       5   2^3-1     3     10   P(3)
%e A371907    7   .x      2   x.xx     13   2^4-1     3     70   P(4)
%e A371907    8   xx      3   ..xx     12   2^4-1     6     35   P(4)
%e A371907    9   x       1   .xxx     14   2^4-1     2    105   P(4)
%e A371907   10   ..x     4   xx.x     11   2^4-1     5     42   P(4)
%e A371907   11   ..x     4   xx.xx    27   2^5-1     5    462   P(5)
%e A371907   12   xxx     7   ...xx    24   2^5-1    30     77   P(5)
%e A371907   13   xxx     7   ...xxx   56   2^6-1    30   1001   P(6)
%e A371907   14   .xxx   14   x...xx   49   2^6-1   105    286   P(6)
%e A371907   15   ...x    8   xxx.xx   55   2^6-1     7   4290   P(6)
%e A371907   16   x..x    9   .xx.xx   54   2^6-1    14   2145   P(6)
%e A371907   --------------------------------------------------------
%e A371907        2357        [T] 11
%e A371907        [S]         235713
%t A371907 Table[Total[2^(-1 + Select[Range@ PrimePi[n], EvenQ@ Quotient[n, Prime[#]] &])], {n, 50}]
%o A371907 (PARI) a(n) = my(vp=primes([1, n])); vecsum(apply(x->2^(x-1), Vec(select(x->(((n\x) % 2)==0), vp, 1)))); \\ _Michel Marcus_, Apr 30 2024
%Y A371907 Cf. A357215, A371906, A372007.
%K A371907 nonn,easy
%O A371907 1,6
%A A371907 _Michael De Vlieger_, Apr 17 2024