This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371908 #16 Jun 04 2024 07:40:12 %S A371908 0,1,3,2,5,4,2,1,5,4,2,1,4,3,1,0,5,4,2,1,4,3,1,0,4,3,1,0,3,2,0,1,7,6, %T A371908 4,3,0,1,3,2,6,5,3,2,5,4,2,1,6,5,3,4,1,0,2,1,5,4,2,1,4,3,1,0,7,6,4,3, %U A371908 0,1,3,2,6,5,3,2,5,4,2,1,6,5,3,2,5,4,2 %N A371908 a(n) = 2-adic valuation of A008336(2*n). %C A371908 Aside from initial 0, first 50 terms agree with A371905: A371905(50) = 3 while a(51) = 5. %H A371908 Michael De Vlieger, <a href="/A371908/b371908.txt">Table of n, a(n) for n = 1..10000</a> %F A371908 a(n) = A007814(A008336(2*n)). %e A371908 Let b(n) = A008336(n) and let f(x) = A007814(x). %e A371908 a(1) = 0 since b(2*1) = 1 and f(b(2)) = 0. %e A371908 a(2) = 1 since b(2*2) = 6 and f(b(4)) = 1. %e A371908 a(3) = 3 since b(2*3) = 120 and f(b(6)) = 3, etc. %t A371908 k = 1; nn = 240; p[_] := 0; r = 0; q = Prime[k]; %t A371908 {0}~Join~Reap[ %t A371908 Do[If[AnyTrue[#, p[#1] < #2 & @@ # &], %t A371908 Map[p[#1] += #2 & @@ # &, #], %t A371908 Map[p[#1] -= #2 & @@ # &, #] ] &@ %t A371908 Map[{PrimePi[#1], #2} & @@ # &, FactorInteger[n]]; %t A371908 If[Divisible[n, q], Sow[p[k] ] ], {n, nn}] ][[-1, 1]] %o A371908 (Python) %o A371908 from itertools import count, islice %o A371908 def A371908_gen(): # generator of terms %o A371908 m = 1 %o A371908 for n in count(1,2): %o A371908 a, b = divmod(m,n) %o A371908 m = m*n if b else a %o A371908 yield (~m&m-1).bit_length() %o A371908 a, b = divmod(m,n+1) %o A371908 m = m*(n+1) if b else a %o A371908 A371908_list = list(islice(A371908_gen(),20)) # _Chai Wah Wu_, Apr 15 2024 %Y A371908 Cf. A007814, A008336, A371905, A372095, A372840. %K A371908 nonn,easy %O A371908 1,3 %A A371908 _Michael De Vlieger_, Apr 11 2024