cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371910 Position of A109890(n) among the sorted set of divisors of A109735(n-1).

This page as a plain text file.
%I A371910 #5 Apr 28 2024 11:40:13
%S A371910 2,4,4,4,7,6,3,4,9,5,6,12,9,9,11,14,9,13,9,4,4,3,6,7,6,10,12,5,5,6,8,
%T A371910 9,13,12,4,15,5,3,4,6,8,4,9,17,7,2,5,3,8,7,6,13,8,17,6,7,4,9,10,8,13,
%U A371910 17,15,7,3,7,13,5,6,16,8,11,8,5,4,13,12,17,5,6
%N A371910 Position of A109890(n) among the sorted set of divisors of A109735(n-1).
%C A371910 A109890(n) is the a(n)-th smallest divisor of A109735(n-1).
%H A371910 Michael De Vlieger, <a href="/A371910/b371910.txt">Table of n, a(n) for n = 3..10000</a>
%F A371910 1 < a(n) <= A371909(n), where A371909(n) = A000005(A109735(n-1)), corollary of Sloane's theorem in the comments in A109890.
%F A371910 A109890(n) = T(j, k), where T = A027750, j = A109735(n-1), and k = a(n).
%F A371910 A371909(n) = A371910(n) if and only if A109890(n) = A109735(n-1).
%e A371910 Table relating sequences b = A109890, s = A109735, c = A371909. a(n) = c(n) implies both A111315(i) = n and A111316(i) = b(n) = s(n-1).
%e A371910     n     b(n)   s(n-1)  a(n)  c(n)    i
%e A371910    --------------------------------------
%e A371910     3       3   =    3     2     2     1
%e A371910     4       6   =    6     4     4     2
%e A371910     5       4       12     4     6
%e A371910     6       8       16     4     5
%e A371910     7      12       24     7     8
%e A371910     8       9       36     6     9
%e A371910     9       5       45     3     6
%e A371910    10      10       50     4     6
%e A371910    11      15       60     9    12
%e A371910    12      25       75     5     6
%e A371910   ...
%e A371910   222  113573 = 113573     4     4     3
%e A371910   ...
%e A371910   232  230801 = 230801     4     4     4
%e A371910   ...
%e A371910   279  941071 = 941071     4     4     5
%e A371910   ...
%t A371910 nn = 120; c[_] := False;
%t A371910 Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
%t A371910 Reap[Do[d = Divisors[s]; k = SelectFirst[d, ! c[#] &];
%t A371910     c[k] = True; Sow[FirstPosition[d, k][[1]]];
%t A371910     s += k, {n, 3, nn}] ][[-1, 1]]
%Y A371910 Cf. A000005, A027750, A109735, A109890, A111315, A111316, A371909.
%K A371910 nonn
%O A371910 3,1
%A A371910 _Michael De Vlieger_, Apr 26 2024