This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371910 #5 Apr 28 2024 11:40:13 %S A371910 2,4,4,4,7,6,3,4,9,5,6,12,9,9,11,14,9,13,9,4,4,3,6,7,6,10,12,5,5,6,8, %T A371910 9,13,12,4,15,5,3,4,6,8,4,9,17,7,2,5,3,8,7,6,13,8,17,6,7,4,9,10,8,13, %U A371910 17,15,7,3,7,13,5,6,16,8,11,8,5,4,13,12,17,5,6 %N A371910 Position of A109890(n) among the sorted set of divisors of A109735(n-1). %C A371910 A109890(n) is the a(n)-th smallest divisor of A109735(n-1). %H A371910 Michael De Vlieger, <a href="/A371910/b371910.txt">Table of n, a(n) for n = 3..10000</a> %F A371910 1 < a(n) <= A371909(n), where A371909(n) = A000005(A109735(n-1)), corollary of Sloane's theorem in the comments in A109890. %F A371910 A109890(n) = T(j, k), where T = A027750, j = A109735(n-1), and k = a(n). %F A371910 A371909(n) = A371910(n) if and only if A109890(n) = A109735(n-1). %e A371910 Table relating sequences b = A109890, s = A109735, c = A371909. a(n) = c(n) implies both A111315(i) = n and A111316(i) = b(n) = s(n-1). %e A371910 n b(n) s(n-1) a(n) c(n) i %e A371910 -------------------------------------- %e A371910 3 3 = 3 2 2 1 %e A371910 4 6 = 6 4 4 2 %e A371910 5 4 12 4 6 %e A371910 6 8 16 4 5 %e A371910 7 12 24 7 8 %e A371910 8 9 36 6 9 %e A371910 9 5 45 3 6 %e A371910 10 10 50 4 6 %e A371910 11 15 60 9 12 %e A371910 12 25 75 5 6 %e A371910 ... %e A371910 222 113573 = 113573 4 4 3 %e A371910 ... %e A371910 232 230801 = 230801 4 4 4 %e A371910 ... %e A371910 279 941071 = 941071 4 4 5 %e A371910 ... %t A371910 nn = 120; c[_] := False; %t A371910 Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2]; %t A371910 Reap[Do[d = Divisors[s]; k = SelectFirst[d, ! c[#] &]; %t A371910 c[k] = True; Sow[FirstPosition[d, k][[1]]]; %t A371910 s += k, {n, 3, nn}] ][[-1, 1]] %Y A371910 Cf. A000005, A027750, A109735, A109890, A111315, A111316, A371909. %K A371910 nonn %O A371910 3,1 %A A371910 _Michael De Vlieger_, Apr 26 2024