A371917 Number of inequivalent convex lattice polygons containing n lattice points (including points on the boundary).
1, 3, 6, 13, 21, 41, 67, 111, 175, 286, 419, 643, 938, 1370, 1939, 2779, 3819, 5293, 7191, 9752, 12991, 17321, 22641, 29687, 38533, 49796, 63621, 81300, 102807, 129787, 162833, 203642, 252898, 313666, 386601, 475540, 582216, 710688, 863552, 1048176
Offset: 3
Keywords
Examples
For n = 3, the only polygon is the standard triangle with vertices (0,0), (1,0) and (0,1). For n = 4, a(4) = 3 and the three polygons have vertex sets {(1,0),(0,1),(-1,-1)}, {(0,0),(2,0),(0,1)} and {(0,0),(1,0),(0,1),(1,1)}.
Links
- Justus Springer, Table of n, a(n) for n = 3..112
- Martin Bohnert and Justus Springer, Classifying rational polygons with small denominator and few interior lattice points, arXiv:2410.17244 [math.CO], 2024. See p. 20.
- R. J. Koelman, The number of moduli families of curves on toric surfaces, Dissertation (1991), Chapter 4.4.
- Justus Springer, RationalPolygons.jl (Version 1.0.0) [Computer software], 2024.
- Justus Springer and M. Bohnert, Lattice polygons with at most 70 lattice points (1.0.0) [Data set], 2024.
Comments