cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371920 Abundant numbers whose abundance is also an abundant number.

Original entry on oeis.org

24, 30, 42, 54, 60, 66, 78, 84, 90, 96, 102, 112, 114, 120, 126, 132, 138, 140, 150, 156, 168, 174, 176, 180, 186, 198, 204, 208, 210, 216, 222, 224, 228, 234, 240, 246, 252, 258, 264, 270, 276, 280, 282, 294, 304, 306, 308, 312, 318, 330, 336, 342, 348, 354, 360
Offset: 1

Views

Author

Amiram Eldar, Apr 12 2024

Keywords

Comments

First differs from A125639 at n = 12.
Numbers k such that A033880(k) > 0 and A033880(A033880(k)) > 0.
This sequence is infinite: if m is divisible by 6 and coprime to 5, then 5*m is a term.
All the multiply-perfect numbers (A007691) that are not 1 or perfect (A000396), i.e., the terms of A166069, are terms of this sequence.

Examples

			24 is a term since A033880(24) = 12 > 0 and A033880(12) = 4 > 0.
		

Crossrefs

Cf. A033880 (abundance), A000396, A007691, A125639.
Subsequence of A005101.

Programs

  • Mathematica
    ab[n_] := DivisorSigma[1, n] - 2*n; q[n_] := Module[{k = ab[n]}, k > 0 && ab[k] > 0]; Select[Range[360], q]
  • PARI
    ab(n) = sigma(n) - 2*n;
    is(n) = {my(k = ab(n)); k > 0 && ab(k) > 0;}