This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371921 #9 Apr 12 2024 11:25:57 %S A371921 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,3,1,1,1,1,1,3,1,1,1,1, %T A371921 1,2,1,1,1,2,1,3,1,1,1,1,1,2,1,1,1,1,1,3,1,2,1,1,1,3,1,1,1,1,1,3,1,1, %U A371921 1,2,1,2,1,1,1,1,1,3,1,2,1,1,1,3,1,1,1 %N A371921 The number of iterations of the map x -> A033880(x) starting at n until the a nonpositive number is reached, or 0 if this does not happen. %C A371921 Analogous to A098007 with A033880(n) = sigma(n) - 2*n instead of A001065(n) = sigma(n) - n. %H A371921 Amiram Eldar, <a href="/A371921/b371921.txt">Table of n, a(n) for n = 1..10000</a> %F A371921 a(n) = 1 if and only if n is nonabundant (A263837). %F A371921 If a(n) > 0 then: %F A371921 a(n) > 1 if n is abundant (A005101). %F A371921 a(n) > 2 if n is in A371920. %e A371921 a(n) = 0 if the iterations that start at n are entering a cycle. Examples of cycles are: %e A371921 1) Cycles of length 1: the triperfect numbers (A005820), 120, 672, 523776, ..., which are the fixed points of A033880. The triperfect numbers can be reached from other values of n, e.g., 276, 448, 486, 510, 702, ... . %e A371921 2) Cycles of length 2: the only known cycle is (45840, 51168) (see A069085). It can be reached from other values of n, e.g., 32130, 39420, 45480, 66300, ... . %e A371921 3) Cycles of length 3: the least cycle is (243732672, 271303776, 256786848). It is first reached from n = 107689320. %e A371921 4) Cycles of length 4: the least cycle is (65071776, 82842816, 89761152, 77260656). It can be reached from other values of n, e.g., 33623940, 41132280, 42825888, ... . The next cycle of length 4 is (985948800, 1381340160, 2183133696, 1489384608). %t A371921 ab[n_] := Module[{k}, If[n < 1, 0, k = DivisorSigma[1, n] - 2*n; If[k < 1, 0, k]]]; a[n_] := Module[{s = NestWhileList[ab, n, UnsameQ, All]}, If[s[[-1]] == 0, Length[s] - 2, 0]]; Array[a, 120] %o A371921 (PARI) ab(n) = {my(k); if(n < 1, 0, k = sigma(n) - 2*n; if(k < 1, 0, k));} %o A371921 a(n) = {my(t = 0); until(bittest(t, n = ab(n)), t += 1<<n); if(n == 0, hammingweight(t) - 1, 0);} \\ after _M. F. Hasler_ at A098007 %Y A371921 Cf. A000203 (sigma), A001065, A033880, A098007. %Y A371921 Cf. A005101, A005820, A069085, A113285, A263837, A371920. %K A371921 nonn,easy %O A371921 1,12 %A A371921 _Amiram Eldar_, Apr 12 2024