This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371928 #37 Apr 16 2024 18:02:03 %S A371928 1,1,1,1,3,1,3,5,6,1,8,15,13,11,1,23,44,43,29,20,1,71,134,138,106,62, %T A371928 37,1,229,427,446,371,248,132,70,1,759,1408,1478,1275,941,571,283,135, %U A371928 1,2566,4753,5017,4410,3437,2331,1310,611,264,1,8817,16321,17339,15458,12426,9027,5709,3002,1324,521,1 %N A371928 T(n,k) is the total number of levels in all Dyck paths of semilength n containing exactly k path nodes; triangle T(n,k), n>=0, 1<=k<=n+1, read by rows. %C A371928 A Dyck path of semilength n has 2n+1 = A005408(n) nodes. %H A371928 Alois P. Heinz, <a href="/A371928/b371928.txt">Rows n = 0..20, flattened</a> %H A371928 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %F A371928 Sum_{k=1..n+1} k * T(n,k) = A001700(n) = A005408(n) * A000108(n). %e A371928 In the A000108(3) = 5 Dyck paths of semilength 3 there are 3 levels with 1 node, 5 levels with 2 nodes, 6 levels with 3 nodes, and 1 level with 4 nodes. %e A371928 1 %e A371928 2 /\ 2 1 1 %e A371928 2 / \ 3 /\/\ 3 /\ 3 /\ 3 %e A371928 2 / \ 2 / \ 3 / \/\ 3 /\/ \ 4 /\/\/\ . %e A371928 So row 3 is [3, 5, 6, 1]. %e A371928 Triangle T(n,k) begins: %e A371928 1; %e A371928 1, 1; %e A371928 1, 3, 1; %e A371928 3, 5, 6, 1; %e A371928 8, 15, 13, 11, 1; %e A371928 23, 44, 43, 29, 20, 1; %e A371928 71, 134, 138, 106, 62, 37, 1; %e A371928 229, 427, 446, 371, 248, 132, 70, 1; %e A371928 759, 1408, 1478, 1275, 941, 571, 283, 135, 1; %e A371928 2566, 4753, 5017, 4410, 3437, 2331, 1310, 611, 264, 1; %e A371928 8817, 16321, 17339, 15458, 12426, 9027, 5709, 3002, 1324, 521, 1; %e A371928 ... %p A371928 g:= proc(x, y, p) (h-> `if`(x=0, add(z^coeff(h, z, i) %p A371928 , i=0..degree(h)), b(x, y, h)))(p+z^y) end: %p A371928 b:= proc(x, y, p) option remember; `if`(y+2<=x, %p A371928 g(x-1, y+1, p), 0)+`if`(y>0, g(x-1, y-1, p), 0) %p A371928 end: %p A371928 T:= n-> (p-> seq(coeff(p, z, i), i=1..n+1))(g(2*n, 0$2)): %p A371928 seq(T(n), n=0..10); %Y A371928 Columns k=1-2 give: A152880, A371903. %Y A371928 Row sums give A261003. %Y A371928 T(n+1,n+1) gives A006127. %Y A371928 Cf. A000108, A001700, A005408, A372014. %K A371928 nonn,tabl %O A371928 0,5 %A A371928 _Alois P. Heinz_, Apr 14 2024