cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371928 T(n,k) is the total number of levels in all Dyck paths of semilength n containing exactly k path nodes; triangle T(n,k), n>=0, 1<=k<=n+1, read by rows.

This page as a plain text file.
%I A371928 #37 Apr 16 2024 18:02:03
%S A371928 1,1,1,1,3,1,3,5,6,1,8,15,13,11,1,23,44,43,29,20,1,71,134,138,106,62,
%T A371928 37,1,229,427,446,371,248,132,70,1,759,1408,1478,1275,941,571,283,135,
%U A371928 1,2566,4753,5017,4410,3437,2331,1310,611,264,1,8817,16321,17339,15458,12426,9027,5709,3002,1324,521,1
%N A371928 T(n,k) is the total number of levels in all Dyck paths of semilength n containing exactly k path nodes; triangle T(n,k), n>=0, 1<=k<=n+1, read by rows.
%C A371928 A Dyck path of semilength n has 2n+1 = A005408(n) nodes.
%H A371928 Alois P. Heinz, <a href="/A371928/b371928.txt">Rows n = 0..20, flattened</a>
%H A371928 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>
%F A371928 Sum_{k=1..n+1} k * T(n,k) = A001700(n) = A005408(n) * A000108(n).
%e A371928 In the A000108(3) = 5 Dyck paths of semilength 3 there are 3 levels with 1 node, 5 levels with 2 nodes, 6 levels with 3 nodes, and 1 level with 4 nodes.
%e A371928   1
%e A371928   2   /\      2           1           1
%e A371928   2  /  \     3  /\/\     3  /\       3    /\     3
%e A371928   2 /    \    2 /    \    3 /  \/\    3 /\/  \    4 /\/\/\    .
%e A371928   So row 3 is [3, 5, 6, 1].
%e A371928 Triangle T(n,k) begins:
%e A371928      1;
%e A371928      1,     1;
%e A371928      1,     3,     1;
%e A371928      3,     5,     6,     1;
%e A371928      8,    15,    13,    11,     1;
%e A371928     23,    44,    43,    29,    20,    1;
%e A371928     71,   134,   138,   106,    62,   37,    1;
%e A371928    229,   427,   446,   371,   248,  132,   70,    1;
%e A371928    759,  1408,  1478,  1275,   941,  571,  283,  135,    1;
%e A371928   2566,  4753,  5017,  4410,  3437, 2331, 1310,  611,  264,   1;
%e A371928   8817, 16321, 17339, 15458, 12426, 9027, 5709, 3002, 1324, 521, 1;
%e A371928   ...
%p A371928 g:= proc(x, y, p) (h-> `if`(x=0, add(z^coeff(h, z, i)
%p A371928           , i=0..degree(h)), b(x, y, h)))(p+z^y) end:
%p A371928 b:= proc(x, y, p) option remember; `if`(y+2<=x,
%p A371928       g(x-1, y+1, p), 0)+`if`(y>0, g(x-1, y-1, p), 0)
%p A371928     end:
%p A371928 T:= n-> (p-> seq(coeff(p, z, i), i=1..n+1))(g(2*n, 0$2)):
%p A371928 seq(T(n), n=0..10);
%Y A371928 Columns k=1-2 give: A152880, A371903.
%Y A371928 Row sums give A261003.
%Y A371928 T(n+1,n+1) gives A006127.
%Y A371928 Cf. A000108, A001700, A005408, A372014.
%K A371928 nonn,tabl
%O A371928 0,5
%A A371928 _Alois P. Heinz_, Apr 14 2024