This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371929 #16 Apr 15 2024 07:15:04 %S A371929 2,2,2,2,1,5,8,6,0,3,9,6,6,4,1,4,4,6,6,9,1,5,5,8,5,3,4,3,9,2,7,2,7,7, %T A371929 6,1,9,0,3,3,4,5,9,7,5,1,1,4,2,5,7,7,5,0,5,3,6,9,9,9,6,2,4,1,9,4,2,8, %U A371929 8,3,4,0,9,1,8,4,1,3,4,0,3,9,6,2,5,8,4,2,0 %N A371929 Decimal expansion of Pi^(1/2)*Gamma(1/12)/(6*Gamma(7/12)). %C A371929 Constants from generalized Pi integrals: the case of n=12. %H A371929 Takayuki Tatekawa, <a href="/A371929/b371929.txt">Table of n, a(n) for n = 1..10001</a> %F A371929 Equals 2*Integral_{x=0..1} dx/sqrt(1-x^12). %F A371929 Equals Beta(1/12, 1/2) / 6. - _Peter Luschny_, Apr 14 2024 %F A371929 Equals (1 + sqrt(3)) * Gamma(1/4)^2 / (4 * 3^(3/4) * sqrt(Pi)). - _Vaclav Kotesovec_, Apr 15 2024 %e A371929 2.2221586039664144669155853439.... %p A371929 Beta(1/12, 1/2) / 6: evalf(%, 89); # _Peter Luschny_, Apr 14 2024 %t A371929 RealDigits[Sqrt[Pi]/6*Gamma[1/12]/Gamma[7/12], 10, 5001][[1]] %t A371929 RealDigits[(1 + Sqrt[3]) * Gamma[1/4]^2 / (4 * 3^(3/4) * Sqrt[Pi]), 10, 120][[1]] (* _Vaclav Kotesovec_, Apr 15 2024 *) %Y A371929 Cf. A085565, A113477, A262427, A371824. %K A371929 nonn,cons %O A371929 1,1 %A A371929 _Takayuki Tatekawa_, Apr 12 2024