cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371944 The binary expansion of a(n) corresponds to the ordinal transform (reduced modulo 2) of the binary expansion of n.

This page as a plain text file.
%I A371944 #16 Apr 17 2024 04:13:50
%S A371944 0,1,3,2,6,6,5,5,13,12,12,13,10,11,11,10,26,26,25,25,25,25,26,26,21,
%T A371944 21,22,22,22,22,21,21,53,52,52,53,50,51,51,50,50,51,51,50,53,52,52,53,
%U A371944 42,43,43,42,45,44,44,45,45,44,44,45,42,43,43,42,106,106
%N A371944 The binary expansion of a(n) corresponds to the ordinal transform (reduced modulo 2) of the binary expansion of n.
%C A371944 Leading zeros are ignored.
%C A371944 All terms belong to A063037.
%H A371944 Rémy Sigrist, <a href="/A371944/b371944.txt">Table of n, a(n) for n = 0..8191</a>
%H A371944 OEIS Wiki, <a href="/wiki/Ordinal_transform">Ordinal transform</a>
%H A371944 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A371944 A070939(a(n)) = A070939(n).
%F A371944 a(floor(n/2)) = floor(a(n)/2).
%e A371944 For n = 43: the binary expansion of 43 is "101011", the corresponding ordinal transform is "1, 1, 2, 2, 3, 4", reducing modulo 2 yields "110010", the binary expansion of a(43), so a(43) = 50.
%t A371944 {0}~Join~Array[(c[0] = 1; c[1] = 1; FromDigits[Map[Mod[c[#]++, 2] &, IntegerDigits[#, 2] ], 2]) &, 120] (* _Michael De Vlieger_, Apr 16 2024 *)
%o A371944 (PARI) a(n) = { my (b = binary(n), f = vector(2)); for (i = 1, #b, b[i] = f[1+b[i]]++;); fromdigits(b % 2, 2); }
%Y A371944 Cf. A063037, A070939, A371961.
%K A371944 nonn,base
%O A371944 0,3
%A A371944 _Rémy Sigrist_, Apr 13 2024