A371948 Numbers k such that k+1 is composite and A371699(k) != p^2 where p = A020639(k+1) is the smallest prime factor of k+1.
288, 298, 340, 360, 376, 516, 526, 550, 582, 736, 778, 792, 802, 816, 892, 988, 1002, 1006, 1072, 1138, 1146, 1198, 1206, 1246, 1270, 1338, 1342, 1348, 1356, 1390, 1402, 1456, 1500, 1516, 1536, 1576, 1632, 1642, 1702, 1726, 1738, 1750, 1768, 1816, 1828, 1842
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import count, islice from sympy import isprime, primefactors, factorint, integer_log def A371948_gen(startvalue=2): # generator of terms >= startvalue for n in count(max(startvalue,2)): if not isprime(n+1): q = min(primefactors(n+1)) for m in range(4,q**2): f = factorint(m) if sum(f.values()) > 1: c = 0 for p in sorted(f,reverse=True): a = pow(n,integer_log(p,n)[0]+1,m) for _ in range(f[p]): c = (c*a+p)%m if not c: yield n break A371948_list = list(islice(A371948_gen(), 30))
Comments