This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371954 #8 Apr 20 2024 10:49:28 %S A371954 1,0,1,0,2,1,0,3,0,1,0,5,3,0,1,0,7,0,0,0,1,0,11,6,4,0,0,1,0,15,0,0,0, %T A371954 0,0,1,0,22,14,0,5,0,0,0,1,0,30,0,10,0,0,0,0,0,1,0,42,25,0,0,6,0,0,0, %U A371954 0,1,0,56,0,0,0,0,0,0,0,0,0,1,0,77,53,30,15,0,7,0,0,0,0,0,1 %N A371954 Triangle read by rows where T(n,k) is the number of integer partitions of n that can be partitioned into k multisets with equal sums (k-quanimous). %C A371954 A finite multiset of numbers is defined to be k-quanimous iff it can be partitioned into k multisets with equal sums. %e A371954 Triangle begins: %e A371954 1 %e A371954 0 1 %e A371954 0 2 1 %e A371954 0 3 0 1 %e A371954 0 5 3 0 1 %e A371954 0 7 0 0 0 1 %e A371954 0 11 6 4 0 0 1 %e A371954 0 15 0 0 0 0 0 1 %e A371954 0 22 14 0 5 0 0 0 1 %e A371954 0 30 0 10 0 0 0 0 0 1 %e A371954 0 42 25 0 0 6 0 0 0 0 1 %e A371954 0 56 0 0 0 0 0 0 0 0 0 1 %e A371954 0 77 53 30 15 0 7 0 0 0 0 0 1 %e A371954 Row n = 6 counts the following partitions: %e A371954 . (6) (33) (222) . . (111111) %e A371954 (51) (321) (2211) %e A371954 (42) (3111) (21111) %e A371954 (411) (2211) (111111) %e A371954 (33) (21111) %e A371954 (321) (111111) %e A371954 (3111) %e A371954 (222) %e A371954 (2211) %e A371954 (21111) %e A371954 (111111) %t A371954 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; %t A371954 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A371954 Table[Length[Select[IntegerPartitions[n], Select[facs[Times@@Prime/@#], Length[#]==k&&SameQ@@hwt/@#&]!={}&]],{n,0,10},{k,0,n}] %Y A371954 Row n has A000005(n) positive entries. %Y A371954 Column k = 1 is A000041. %Y A371954 Column k = 2 is A002219 (aerated), ranks A357976. %Y A371954 Column k = 3 is A002220 (aerated), ranks A371955. %Y A371954 Removing all zeros gives A371783. %Y A371954 Row sums are A372121. %Y A371954 A321451 counts non-quanimous partitions, ranks A321453. %Y A371954 A321452 counts quanimous partitions, ranks A321454. %Y A371954 A371789 counts non-quanimous sets, complement A371796. %Y A371954 Cf. A002221, A002222, A006827, A035470, A064914, A237258, A321142, A321455, A365543, A371795. %K A371954 nonn,tabl %O A371954 0,5 %A A371954 _Gus Wiseman_, Apr 20 2024