This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371955 #11 May 19 2025 16:33:09 %S A371955 8,27,36,48,64,125,150,180,200,216,240,288,320,343,384,441,490,512, %T A371955 567,588,630,700,729,756,784,810,840,900,972,1000,1008,1080,1120,1200, %U A371955 1296,1331,1344,1440,1600,1694,1728,1792,1815,1920,2156,2178,2197,2304,2310 %N A371955 Numbers with triquanimous prime indices. %C A371955 A finite multiset of numbers is defined to be triquanimous iff it can be partitioned into three multisets with equal sums. %C A371955 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A371955 Robert Israel, <a href="/A371955/b371955.txt">Table of n, a(n) for n = 1..500</a> %e A371955 The terms together with their prime indices begin: %e A371955 8: {1,1,1} %e A371955 27: {2,2,2} %e A371955 36: {1,1,2,2} %e A371955 48: {1,1,1,1,2} %e A371955 64: {1,1,1,1,1,1} %e A371955 125: {3,3,3} %e A371955 150: {1,2,3,3} %e A371955 180: {1,1,2,2,3} %e A371955 200: {1,1,1,3,3} %e A371955 216: {1,1,1,2,2,2} %e A371955 240: {1,1,1,1,2,3} %e A371955 288: {1,1,1,1,1,2,2} %e A371955 320: {1,1,1,1,1,1,3} %e A371955 343: {4,4,4} %e A371955 384: {1,1,1,1,1,1,1,2} %e A371955 441: {2,2,4,4} %e A371955 490: {1,3,4,4} %e A371955 512: {1,1,1,1,1,1,1,1,1} %e A371955 567: {2,2,2,2,4} %e A371955 588: {1,1,2,4,4} %p A371955 tripart:= proc(L) local t,X,Y,n,cons,i,R; %p A371955 t:= convert(L,`+`)/3; %p A371955 n:= nops(L); %p A371955 if not t::integer then return false fi; %p A371955 cons:= [add(L[i]*X[i],i=1..n)=t, %p A371955 add(L[i]*Y[i],i=1..n)=t, %p A371955 seq(X[i] + Y[i] <= 1, i=1..n)]; %p A371955 R:= traperror(Optimization:-Maximize(0, cons, assume=binary)); %p A371955 R::list %p A371955 end proc: %p A371955 primeindices:= proc(n) local F,t; %p A371955 F:= ifactors(n)[2]; %p A371955 map(t -> numtheory:-pi(t[1])$t[2], F) %p A371955 end proc: %p A371955 select(tripart @ primindices, [$2..3000]); # _Robert Israel_, May 19 2025 %t A371955 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; %t A371955 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A371955 Select[Range[1000],Select[facs[#], Length[#]==3&&SameQ@@hwt/@#&]!={}&] %Y A371955 These are the Heinz numbers of the partitions counted by A002220. %Y A371955 For biquanimous we have A357976, counted by A002219. %Y A371955 For non-biquanimous we have A371731, counted by A371795, even case A006827. %Y A371955 A112798 lists prime indices, reverse A296150, length A001222, sum A056239. %Y A371955 A237258 (aerated) counts biquanimous strict partitions, ranks A357854. %Y A371955 A371783 counts k-quanimous partitions. %Y A371955 Cf. A000005, A002221, A035470, A064914, A232466, A299701, A321142, A321454, A321455, A326534, A357879, A371781. %K A371955 nonn %O A371955 1,1 %A A371955 _Gus Wiseman_, Apr 19 2024