This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371964 #27 Apr 15 2024 13:12:44 %S A371964 0,0,0,0,1,7,35,155,650,2652,10660,42484,168454,665874,2627130, %T A371964 10353290,40775045,160534895,631970495,2487938015,9795810125, %U A371964 38576953505,151957215305,598732526105,2359771876175,9303298456451,36688955738099,144732209103699,571117191135799 %N A371964 a(n) is the sum of all symmetric valleys in the set of Catalan words of length n. %H A371964 Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, <a href="https://arxiv.org/abs/2404.05672">Enumerating runs, valleys, and peaks in Catalan words</a>, arXiv:2404.05672 [math.CO], 2024. See Corollary 4.7, pp. 16-17. %F A371964 G.f.: (1 - 4*x + 2*x^2 - (1 - 2*x)*sqrt(1 - 4*x))/(2*(1 - x)*sqrt(1 - 4*x)). %F A371964 a(n) = (3*n - 2)*A000108(n-1) - A079309(n) for n > 0. %F A371964 a(n) ~ 2^(2*n)/(12*sqrt(Pi*n)). %F A371964 a(n)/A371963(n) ~ 1/2. %F A371964 a(n) - a(n-1) = A002694(n-2). %e A371964 a(4) = 1 because there is 1 Catalan word of length 4 with one symmetric valley: 0101. %e A371964 a(5) = 7 because there are 7 Catalan words of length 5 with one symmetric valley: 00101, 01001, 01010, 01011, 01012, 01101, and 01212 (see example at p. 16 in Baril et al.). %p A371964 a:= proc(n) option remember; `if`(n<4, 0, %p A371964 a(n-1)+binomial(2*n-4, n-4)) %p A371964 end: %p A371964 seq(a(n), n=0..28); # _Alois P. Heinz_, Apr 15 2024 %t A371964 CoefficientList[Series[(1-4x+2x^2-(1-2x)Sqrt[1-4x])/(2(1-x) Sqrt[1-4x]),{x,0,29}],x] %o A371964 (Python) %o A371964 from math import comb %o A371964 def A371964(n): return sum(comb((n-i<<1)-4,n-i-4) for i in range(n-3)) # _Chai Wah Wu_, Apr 15 2024 %Y A371964 Cf. A371963, A371965. %Y A371964 Cf. A000108, A002694, A079309. %K A371964 nonn %O A371964 0,6 %A A371964 _Stefano Spezia_, Apr 14 2024