cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371965 a(n) is the sum of all peaks in the set of Catalan words of length n.

This page as a plain text file.
%I A371965 #41 Jun 20 2025 11:15:19
%S A371965 0,0,0,1,6,27,111,441,1728,6733,26181,101763,395693,1539759,5997159,
%T A371965 23381019,91244934,356427459,1393585779,5453514729,21358883439,
%U A371965 83718027429,328380697629,1288947615849,5062603365999,19896501060225,78239857877649,307831771279549,1211767933187601
%N A371965 a(n) is the sum of all peaks in the set of Catalan words of length n.
%H A371965 Alois P. Heinz, <a href="/A371965/b371965.txt">Table of n, a(n) for n = 0..1000</a>
%H A371965 Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, <a href="https://arxiv.org/abs/2404.05672">Enumerating runs, valleys, and peaks in Catalan words</a>, arXiv:2404.05672 [math.CO], 2024. See Corollary 4.7, p. 19.
%F A371965 G.f.: (1 - 3*x - (1 - x)*sqrt(1 - 4*x))/(2*(1 - x)*sqrt(1 - 4*x)).
%F A371965 a(n) = Sum_{i=1..n-1} binomial(2*(n-i)-1,n-i-2).
%F A371965 a(n) ~ 2^(2*n)/(6*sqrt(Pi*n)).
%F A371965 a(n)/A371963(n) ~ 1.
%F A371965 a(n) - a(n-1) = A002054(n-2).
%F A371965 From _Mélika Tebni_, Jun 15 2024: (Start)
%F A371965 E.g.f.: (exp(2*x)*BesselI(0,2*x)-1)/2 - exp(x)*Integral_{x=-oo..oo} BesselI(0,2*x)*exp(x) dx.
%F A371965 a(n) = binomial(2*n,n)*(1/2 + hypergeom([1,n+1/2],[n+1],4)) + i/sqrt(3) - 0^n/2.
%F A371965 a(n) = (3*A106191(n) + A006134(n) + 4*0^n) / 8.
%F A371965 a(n) = A281593(n) - (A000984(n) + 0^n) / 2. (End)
%F A371965 Binomial transform of A275289. - _Alois P. Heinz_, Jun 20 2025
%e A371965 a(3) = 1 because there is 1 Catalan word of length 3 with one peak: 010.
%e A371965 a(4) = 6 because there are 6 Catalan words of length 4 with one peak: 0010, 0100, 0101, 0110, 0120, and 0121 (see Figure 10 at p. 19 in Baril et al.).
%p A371965 a:= proc(n) option remember; `if`(n<3, 0,
%p A371965       a(n-1)+binomial(2*n-3, n-3))
%p A371965     end:
%p A371965 seq(a(n), n=0..28);  # _Alois P. Heinz_, Apr 15 2024
%p A371965 # Second Maple program:
%p A371965 A371965 := series((exp(2*x)*BesselI(0,2*x)-1)/2-exp(x)*(int(BesselI(0,2*x)*exp(x), x)), x = 0, 29):
%p A371965 seq(n!*coeff(A371965, x, n), n = 0 .. 28); # _Mélika Tebni_, Jun 15 2024
%t A371965 CoefficientList[Series[(1-3x-(1-x)Sqrt[1-4x])/(2(1-x) Sqrt[1-4x]),{x,0,28}],x]
%o A371965 (Python)
%o A371965 from math import comb
%o A371965 def A371965(n): return sum(comb((n-i<<1)-3,n-i-3) for i in range(n-2)) # _Chai Wah Wu_, Apr 15 2024
%Y A371965 Cf. A371963, A371964.
%Y A371965 Cf. A002054, A275289.
%K A371965 nonn
%O A371965 0,5
%A A371965 _Stefano Spezia_, Apr 14 2024