This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371978 #20 Apr 16 2024 08:27:32 %S A371978 1,3,8,22,61,174,504,1478,4374,13035,39062,117585,355279,1076845, %T A371978 3272692,9969385,30430982,93055869,285013326,874193006,2684778104, %U A371978 8254967674,25408703236,78283452265,241403160254,745024894092,2301051484006,7111897305089,21995136183906 %N A371978 Number of ways of placing n non-attacking wazirs on a 3 X n board. %H A371978 Alois P. Heinz, <a href="/A371978/b371978.txt">Table of n, a(n) for n = 0..2011</a> %H A371978 Wikipedia, <a href="https://en.wikipedia.org/wiki/Wazir_(chess)">Wazir (chess)</a> %F A371978 a(n) = A371967(n,n). %F A371978 From _Vaclav Kotesovec_, Apr 16 2024: (Start) %F A371978 Recurrence: (n+1)*(72*n^4 - 700*n^3 + 2288*n^2 - 2803*n + 796)*a(n) = 2*(144*n^5 - 1328*n^4 + 3814*n^3 - 3083*n^2 - 1479*n + 1194)*a(n-1) - 2*(72*n^5 - 700*n^4 + 2050*n^3 - 1979*n^2 + 409*n + 16)*a(n-2) - 4*(36*n^5 - 368*n^4 + 1437*n^3 - 2421*n^2 + 1398*n + 95)*a(n-3) - (72*n^5 - 772*n^4 + 2404*n^3 - 1365*n^2 - 4749*n + 5704)*a(n-4) + 2*(72*n^5 - 808*n^4 + 2858*n^3 - 3067*n^2 - 1494*n + 2666)*a(n-5) - (n-6)*(72*n^4 - 412*n^3 + 620*n^2 - 39*n - 347)*a(n-6). %F A371978 a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = (188 + 12*sqrt(93))^(1/3)/6 + 14/(3*(188 + 12*sqrt(93))^(1/3)) + 4/3 and c = 11/6 + (1465336244224 - 5597165568*sqrt(93))^(1/3)/5952 + ((23080523 + 88161*sqrt(93))/2)^(1/3) / (12*31^(2/3)). (End) %e A371978 a(2) = 8: %e A371978 +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ %e A371978 | W . | | W . | | W . | | . W | | . W | | . W | | . . | | . . | %e A371978 | . W | | . . | | . . | | W . | | . . | | . . | | W . | | . W | %e A371978 | . . | | W . | | . W | | . . | | W . | | . W | | . W | | W . | %e A371978 +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ . %p A371978 b:= proc(n, l) option remember; `if`(n=0, 1, %p A371978 add(`if`(Bits[And](j, l)>0, 0, expand(b(n-1, j)* %p A371978 x^add(i, i=Bits[Split](j)))), j=[0, 1, 2, 4, 5])) %p A371978 end: %p A371978 a:= n-> coeff(b(n, 0), x, n): %p A371978 seq(a(n), n=0..30); %Y A371978 Main diagonal of A371967. %Y A371978 Cf. A201511, A371979. %K A371978 nonn %O A371978 0,2 %A A371978 _Alois P. Heinz_, Apr 14 2024