cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371981 Number of primes between two successive Sophie Germain primes, with Sophie Germain primes not themselves included in the count.

This page as a plain text file.
%I A371981 #14 Jun 11 2024 10:03:50
%S A371981 0,0,1,3,0,2,2,6,0,5,1,7,0,1,7,0,1,5,1,9,8,1,2,7,2,10,7,2,0,3,3,3,2,4,
%T A371981 15,5,7,0,1,2,8,14,0,7,13,4,1,3,4,0,5,3,1,17,9,9,0,2,3,5,4,1,0,7,2,14,
%U A371981 7,2,6,0,6,7,0,18,0,6,1,7,9,3,2,0,5,28,5,3,3,2,1,5,6,7,3,15,2
%N A371981 Number of primes between two successive Sophie Germain primes, with Sophie Germain primes not themselves included in the count.
%C A371981 Number of primes between A005384(n) and A005384(n+1).
%F A371981 a(n) = A000720(A005384(n+1)) - A000720(A005384(n)) - 1. - _Michael De Vlieger_, Apr 19 2024
%e A371981 a(4) = 3 because there are 3 primes between 11 and 23: 13, 17 and 19.
%t A371981 -1 + Subtract @@ Map[PrimePi, {Last[#], First[#]}] & /@ Partition[Select[Prime[Range[500]], PrimeQ[2 # + 1] &], 2, 1] (* _Michael De Vlieger_, Apr 19 2024 *)
%o A371981 (Python)
%o A371981 from sympy import isprime
%o A371981 l = []
%o A371981 s = 0
%o A371981 for i in range(3,3800):
%o A371981     if isprime(i):
%o A371981         if isprime(2*i + 1):
%o A371981             l.append(s)
%o A371981             s = 0
%o A371981         else:
%o A371981             s += 1
%o A371981 print(l)
%o A371981 (PARI) lista(nn) = my(vp = select(p->isprime(2*p+1), primes(nn)), wp = apply(primepi, vp)); vector(#wp-1, k, wp[k+1]-wp[k]-1); \\ _Michel Marcus_, May 21 2024
%Y A371981 Cf. A000720, A005384.
%K A371981 nonn
%O A371981 1,4
%A A371981 _Alexandre Herrera_, Apr 15 2024