cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371992 Number of different closest packings of equal spheres for rhombohedral crystals having repeat period n.

This page as a plain text file.
%I A371992 #20 Jun 12 2025 13:15:23
%S A371992 0,0,1,1,2,3,5,8,15,23,41,70,126,223,406,740,1370,2545,4769,8977,
%T A371992 16985,32261,61469,117488,225060,432159,831235,1601796,3090926,
%U A371992 5973198,11556533,22385600,43405353,84247085,163661488,318209920,619181766,1205733457,2349558582,4581555964,8939468450,17453081143,34094082857
%N A371992 Number of different closest packings of equal spheres for rhombohedral crystals having repeat period n.
%H A371992 J. E. Iglesias, <a href="https://doi.org/10.1524/zkri.1981.155.1-2.121">A formula for the number of closest packings of equal spheres having a given repeat period</a>, Z. Krist. 155 (1981) 121-127, Table 1.
%F A371992 a(n) + A371991(n) = A000046(n).
%F A371992 a(n+1)/a(n) = 2 - 2/n + o(1/n). - _M. F. Hasler_, Jun 09 2025
%t A371992 fa[p_,q_] := fa[p,q] = (p+q-1)!/(p!q!) - Sum[fa[p/d,q/d]/d, {d, Rest[Intersection@@(Divisors/@{p,q})]}]; (*A051168(p+q,p); Iglesias Eq. (1)*)
%t A371992 fb[p_,q_] := fb[p,q] = (Quotient[p,2]+Quotient[q,2])!/(Quotient[p,2]!Quotient[q,2]!) - Sum[fb[p/d,q/d], {d, Rest[Intersection@@(Divisors/@{p,q})]}]; (*A180424(p+q,p); Eq. (2)*)
%t A371992 am[p_] := am[p] = 2^(p-1) - Sum[am[p/d], {d, Rest@Divisors@p}]; (*A000740; Eq. (6)*)
%t A371992 atf[p_] := atf[p] = 2^(p-1)/p - Sum[atf[p/d]/d, {d, Select[Rest@Divisors@p, OddQ]}];(*A000048; Eq. (9)*)
%t A371992 a[n_] := Sum[With[{p=n-q}, fa[p,q]+fb[p,q] + If[p==q, am[p]+atf[p]-fa[p,q]-fb[p,q], 0] / 2], {q, Select[Range[n/2], !Divisible[n-2#,3]& (*the opposite condition would give A371991*)]}] / 2; (* Eq. (5) *)
%t A371992 Table[a[n], {n, 2, 40}] (* _Andrei Zabolotskii_, May 30 2025 *)
%o A371992 (PARI) apply( {A371992(n)=sum(q=1, n\2, if((n-2*q)%3, A051168(n,q)+A180424(n,q)))/2}, [1..40]) \\ _M. F. Hasler_, Jun 05 2025
%Y A371992 Cf. A371991, A000046, A051168, A180424, A000740, A000048.
%K A371992 nonn
%O A371992 1,5
%A A371992 _R. J. Mathar_, Apr 15 2024
%E A371992 Offset changed to 1 and a(1) = 0 prefixed by _M. F. Hasler_, Jun 05 2025