cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372001 Array read by descending antidiagonals: A family of generalized Catalan numbers generated by a generalization of Deléham's Delta operator.

This page as a plain text file.
%I A372001 #24 Apr 23 2024 05:56:26
%S A372001 1,1,1,2,1,1,5,3,1,1,14,15,5,1,1,42,105,61,9,1,1,132,945,1385,297,17,
%T A372001 1,1,429,10395,50521,24273,1585,33,1,1,1430,135135,2702765,3976209,
%U A372001 485729,8865,65,1,1,4862,2027025,199360981,1145032281,372281761,10401345,50881,129,1,1
%N A372001 Array read by descending antidiagonals: A family of generalized Catalan numbers generated by a generalization of Deléham's Delta operator.
%C A372001 Deléham's Delta operator is defined in A084938. It maps two sequences (a, b) to a triangle T. The given sequences are the coefficients of the linear function p = a + x*b which is the starting point of a recurrence described in A084938 and implemented in A371637. The generalization given here extends the number of input sequences to any number, mapping (a, b, c, ...) to p = a + x*b + x^2*c ... but leaves the recurrence unchanged.
%C A372001 The result, as said, is a triangle that we can evaluate in two ways: Firstly, we only return the main diagonal. In this case, we created a new sequence from n given sequences. This case is implemented by the function A(n, dim) below.
%C A372001 Alternatively, we return the entire triangle. But since the triangle is irregular, we convert it into a regular one by taking only every n-th term of a row. This case is handled by the function T(n, dim). For the first few triangles generated this way, see the link section.
%H A372001 Peter Luschny, <a href="/A372001/a372001.txt">First few triangles generated by A372001.</a>
%F A372001 A = DELTA([x -> (x + 1)^k : 0 <= k <= n]), i.e. here the input functions of the generalized Delta operator are the (shifted) power functions. The returned sequence is the main diagonal of the generated triangle.
%e A372001 Array starts:
%e A372001   [0] 1, 1,  2,     5,        14,            42,                132, ...
%e A372001   [1] 1, 1,  3,    15,       105,           945,              10395, ...
%e A372001   [2] 1, 1,  5,    61,      1385,         50521,            2702765, ...
%e A372001   [3] 1, 1,  9,   297,     24273,       3976209,         1145032281, ...
%e A372001   [4] 1, 1, 17,  1585,    485729,     372281761,       601378506737, ...
%e A372001   [5] 1, 1, 33,  8865,  10401345,   38103228225,    352780110115425, ...
%e A372001   [6] 1, 1, 65, 50881, 231455105, 4104215813761, 220579355255364545, ...
%e A372001 .
%e A372001 Seen as a triangle T(n, k) = A(k, n - k):
%e A372001   [0] [  1]
%e A372001   [1] [  1,     1]
%e A372001   [2] [  2,     1,     1]
%e A372001   [3] [  5,     3,     1,     1]
%e A372001   [4] [ 14,    15,     5,     1,    1]
%e A372001   [5] [ 42,   105,    61,     9,    1,  1]
%e A372001   [6] [132,   945,  1385,   297,   17,  1, 1]
%e A372001   [7] [429, 10395, 50521, 24273, 1585, 33, 1, 1]
%o A372001 (SageMath)
%o A372001 def GeneralizedDelehamDelta(F, dim, seq=True):  # The algorithm.
%o A372001     ring = PolynomialRing(ZZ, 'x')
%o A372001     x = ring.gen()
%o A372001     A = [sum(F[j](k) * x^j for j in range(len(F))) for k in range(dim)]
%o A372001     C = [ring(0)] + [ring(1) for i in range(dim)]
%o A372001     for k in range(dim):
%o A372001         for n in range(k, 0, -1):
%o A372001             C[n] = C[n-1] + C[n+1] * A[n-1]
%o A372001         yield list(C[1])[-1] if seq else list(C[1])
%o A372001 def F(n):  # Define the input functions.
%o A372001     def p0(): return lambda n: pow(n, n^0)
%o A372001     def p(k): return lambda n: pow(n + 1, k)
%o A372001     return [p0()] + [p(k) for k in range(n + 1)]
%o A372001 def A(n, dim): # Return only the main diagonal of the triangle.
%o A372001     return [r for r in GeneralizedDelehamDelta(F(n), dim)]
%o A372001 for n in range(7): print(A(n, 7))
%o A372001 def T(n, dim): # Return the regularized triangle.
%o A372001     R = GeneralizedDelehamDelta(F(n), dim, False)
%o A372001     return [[r[k] for k in range(0, len(r), n + 1)] for r in R]
%o A372001 for n in range(0, 4):
%o A372001     for row in T(n, 6): print(row)
%Y A372001 By ascending antidiagonals: A290569.
%Y A372001 Family: A000108 (n=0), A001147 (n=1), A000364 (n=2), A216966 (n=3), A227887 (n=4), A337807 (n=5), A337808 (n=6), A337809 (n=7).
%Y A372001 Cf. A291333 (main diagonal), A371999 (row sums of triangle).
%Y A372001 Cf. A084938, A131427, A371994, A371637.
%K A372001 nonn,tabl
%O A372001 1,4
%A A372001 _Peter Luschny_, Apr 21 2024