cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372007 a(n) = product of those prime(k) such that floor(n/prime(k)) is even.

This page as a plain text file.
%I A372007 #27 May 05 2024 19:52:35
%S A372007 1,1,1,2,2,3,3,6,2,5,5,30,30,105,7,14,14,21,21,210,10,55,55,330,66,
%T A372007 429,143,2002,2002,15015,15015,30030,910,7735,221,1326,1326,12597,323,
%U A372007 3230,3230,33915,33915,746130,49742,572033,572033,3432198,490314,1225785,24035
%N A372007 a(n) = product of those prime(k) such that floor(n/prime(k)) is even.
%C A372007 The only primes in the sequence are 2, 3, 5, and 7.
%H A372007 Michael De Vlieger, <a href="/A372007/b372007.txt">Table of n, a(n) for n = 1..7591</a>
%H A372007 Michael De Vlieger, <a href="/A372007/a372007.png">Plot prime(i) | a(n) at (x,y) = (n,i)</a> for n = 1..2048, 12X vertical exaggeration.
%H A372007 Michael De Vlieger, <a href="https://doi.org/10.13140/RG.2.2.10066.36806">"Tiger Stripe" Factors of Primorials</a>, ResearchGate, 2024.
%F A372007 a(n) = A034386(n) / A372000(n).
%F A372007 a(n) = Product_{k = 1..pi(n)} Product_{j = 1+floor(n/(2*k+1))..floor(n/(2*k))} prime(j), where pi(x) = A000720(n).
%e A372007 a(1) = 1 since n = 1 is the empty product.
%e A372007 a(2) = 1 since for n = 2, floor(n/p) = floor(2/2) = 1 is odd.
%e A372007 a(3) = 1 since for n = 3 and p = 2, floor(3/2) = 1 is odd, and for p = 3, floor(3/3) = 1 is odd.
%e A372007 a(4) = 2 since for n = 4 and p = 2, floor(4/2) = 2 is even, but for p = 3, floor(4/3) = 1 is odd. Therefore, a(4) = 2.
%e A372007 a(5) = 2 since for n = 5, though floor(5/2) = 2 is even, floor(5/3) and floor(5/5) are both odd. Therefore, a(5) = 2.
%e A372007 a(8) = 6 since for n = 8, both floor(8/2) and floor(8/3) are even, but both floor(8/5) and floor(8/7) are odd. Therefore, a(8) = 2*3 = 6, etc.
%e A372007 Table relating a(n) with b(n), s(n), and t(n), diagramming prime factors with "x" that produce a(n) or b(n), or powers of 2 with "x" that sum to s(n) or t(n). Sequences b(n) = A372000(n), c(n) = A034386(n), s(n) = A371907(n), t(n) = A371906(n), and v(n) = A357215(n) = s(n) + t(n). Column A represents prime factors of a(n), B same of b(n), while column S (at bottom) shows powers of 2 that sum to s(n), with T same for t(n). P(n) = A002110(n).
%e A372007        [A]          [B] 11
%e A372007    n   2357   a(n)  235713    b(n)  c(n)  s(n) t(n)   v(n)
%e A372007   --------------------------------------------------------
%e A372007    1   .        1   .           1   P(0)    0    0   2^0-1
%e A372007    2   .        1   x           2   P(1)    0    1   2^1-1
%e A372007    3   .        1   xx          6   P(2)    0    3   2^2-1
%e A372007    4   x        2   .x          3   P(2)    1    2   2^2-1
%e A372007    5   x        2   .xx        15   P(3)    1    6   2^3-1
%e A372007    6   .x       3   x.x        10   P(3)    2    5   2^3-1
%e A372007    7   .x       3   x.xx       70   P(4)    2   13   2^4-1
%e A372007    8   xx       6   ..xx       35   P(4)    3   12   2^4-1
%e A372007    9   x        2   .xxx      105   P(4)    1   14   2^4-1
%e A372007   10   ..x      5   xx.x       42   P(4)    4   11   2^4-1
%e A372007   11   ..x      5   xx.xx     462   P(5)    4   27   2^5-1
%e A372007   12   xxx     30   ...xx      77   P(5)    7   24   2^5-1
%e A372007   13   xxx     30   ...xxx   1001   P(6)    7   56   2^6-1
%e A372007   14   .xxx   105   x...xx    286   P(6)   14   49   2^6-1
%e A372007   15   ...x     7   xxx.xx   4290   P(6)    8   55   2^6-1
%e A372007   16   x..x    14   .xx.xx   2145   P(6)    9   54   2^6-1
%e A372007   --------------------------------------------------------
%e A372007        0123         012345
%e A372007      [S] 2^k        [T] 2^k
%t A372007 Table[Times @@ Select[Prime@ Range@ PrimePi[n], EvenQ@ Quotient[n, #] &], {n, 51}] (* or *)
%t A372007 Table[Product[Prime[i], {j, PrimePi[n]}, {i, 1 + PrimePi[Floor[n/(2  j + 1)]], PrimePi[Floor[n/(2  j)]]}], {n, 51}]
%o A372007 (PARI) a(n) = my(vp=primes([1, n])); vecprod(select(x->(((n\x) % 2)==0), vp)); \\ _Michel Marcus_, Apr 30 2024
%Y A372007 Cf. A005117, A034386, A371907, A372000.
%K A372007 nonn,easy
%O A372007 1,4
%A A372007 _Michael De Vlieger_, Apr 17 2024