cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372014 T(n,k) is the total number of levels in all Motzkin paths of length n containing exactly k path nodes; triangle T(n,k), n>=0, 1<=k<=n+1, read by rows.

This page as a plain text file.
%I A372014 #22 Apr 16 2024 19:05:28
%S A372014 1,0,1,1,1,1,2,2,2,1,4,6,4,3,1,8,14,12,7,4,1,18,32,33,21,11,5,1,44,74,
%T A372014 84,64,34,16,6,1,113,180,208,181,111,52,22,7,1,296,457,520,485,344,
%U A372014 179,76,29,8,1,782,1195,1334,1273,1000,599,274,107,37,9,1
%N A372014 T(n,k) is the total number of levels in all Motzkin paths of length n containing exactly k path nodes; triangle T(n,k), n>=0, 1<=k<=n+1, read by rows.
%C A372014 A Motzkin path of length n has n+1 nodes.
%H A372014 Alois P. Heinz, <a href="/A372014/b372014.txt">Rows n = 0..28, flattened</a>
%H A372014 Wikipedia, <a href="https://en.wikipedia.org/wiki/Motzkin_number">Motzkin number</a>
%F A372014 Sum_{k=1..n+1} k * T(n,k) = A005717(n+1) = (n+1) * A001006(n).
%e A372014 In the A001006(3) = 4 Motzkin paths of length 3 there are 2 levels with 1 node, 2 levels with 2 nodes, 2 levels with 3 nodes, and 1 level with 4 nodes.
%e A372014   2  _     1        1
%e A372014   2 / \    3 /\_    3 _/\    4 ___    .
%e A372014   So row 3 is [2, 2, 2, 1].
%e A372014 Triangle T(n,k) begins:
%e A372014     1;
%e A372014     0,    1;
%e A372014     1,    1,    1;
%e A372014     2,    2,    2,    1;
%e A372014     4,    6,    4,    3,    1;
%e A372014     8,   14,   12,    7,    4,   1;
%e A372014    18,   32,   33,   21,   11,   5,   1;
%e A372014    44,   74,   84,   64,   34,  16,   6,   1;
%e A372014   113,  180,  208,  181,  111,  52,  22,   7,  1;
%e A372014   296,  457,  520,  485,  344, 179,  76,  29,  8, 1;
%e A372014   782, 1195, 1334, 1273, 1000, 599, 274, 107, 37, 9, 1;
%e A372014   ...
%p A372014 g:= proc(x, y, p) (h-> `if`(x=0, add(z^coeff(h, z, i)
%p A372014           , i=0..degree(h)), b(x, y, h)))(p+z^y) end:
%p A372014 b:= proc(x, y, p) option remember; `if`(y+2<=x, g(x-1, y+1, p), 0)
%p A372014       +`if`(y+1<=x, g(x-1, y, p), 0)+`if`(y>0, g(x-1, y-1, p), 0)
%p A372014     end:
%p A372014 T:= n-> (p-> seq(coeff(p, z, i), i=1..n+1))(g(n, 0$2)):
%p A372014 seq(T(n), n=0..10);
%Y A372014 Columns k=1-2 give: A088457, A051485.
%Y A372014 Row sums give A372033 = A001006 + A333498.
%Y A372014 Cf. A005717, A371928.
%K A372014 nonn,tabl
%O A372014 0,7
%A A372014 _Alois P. Heinz_, Apr 15 2024