A372027 Maximum second Zagreb index of maximal outerplanar graphs with n vertices.
12, 33, 61, 96, 135, 181, 233, 291, 355, 425, 501, 583, 671, 765, 865, 971, 1083, 1201, 1325, 1455, 1591, 1733, 1881, 2035, 2195, 2361, 2533, 2711, 2895, 3085, 3281, 3483, 3691, 3905, 4125, 4351, 4583, 4821, 5065, 5315, 5571, 5833, 6101, 6375, 6655, 6941, 7233, 7531
Offset: 3
Keywords
Examples
The graph K_3 has 3 degree 2 vertices, so a(3) = 3*4 = 12.
Links
- Paolo Xausa, Table of n, a(n) for n = 3..10000
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Allan Bickle, Zagreb Indices of Maximal k-degenerate Graphs, Australas. J. Combin. 89 1 (2024) 167-178.
- J. Estes and B. Wei, Sharp bounds of the Zagreb indices of k-trees, J Comb Optim 27 (2014), 271-291.
- A. Hou, S. Li, L. Song, and B. Wei, Sharp bounds for Zagreb indices of maximal outerplanar graphs, J Comb Optim 22 (2011), 252-269.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{3, -3, 1}, {12, 33, 61, 96, 135, 181, 233}, 50] (* Paolo Xausa, Jan 22 2025 *)
Formula
a(n) = 3*n^2 + n - 19 when n is not 3 or 6.
From Chai Wah Wu, Apr 16 2024: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 9.
G.f.: x^3*(x^6 - 3*x^5 + 3*x^4 + 2*x^2 + 3*x - 12)/(x - 1)^3. (End)
Comments